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ABSTRACT: The essential elements of an explicit model for the accumulation of strain due to cyclic loading
are presented. This publication is closely related to the information in two companion papers by Wichtmann
et al. (2004b,c). Actually the presented model comprises most of the experimental data given in the above
mentioned companion papers. Remarks on the FE implementation and an example of a FE analysis of a strip
foundation under cyclic axial load are enclosed.

1 INTRODUCTION

A considerable displacement of structures may be
caused by the accumulation of the irreversible defor-
mation of soil due to cyclic loading. If the number of
cycles is large then even relatively small amplitudes
may endanger the long-term serviceability of struc-
tures (especially if its displacement tolerance is small
e.g. for a magnetic levitation train). Under undrained
conditions, in place of the usual densification, exces-
sive pore pressure is generated. It may lead to soil liq-
uefaction and eventually to a loss of overall stability.
Therefore the accumulation phenomenon is of practi-
cal importance.

The conventional elastoplastic constitutive models
cannot predict any accumulation if the strain loop
lies within the elastic regime. Of course, some un-
intentional accumulation may appear due to numer-
ical errors or a poor, non-conservative elastic stress -
strain relation. These errors are often quite consider-
able also in multisurface elastoplastic models or in the
hypoplastic model with intergranular strain (Niemu-
nis 2003) if the number of cycles N exceeds several
hundreds. In the present context we say that the clas-
sical constitutive models are implicit formulations be-
cause the accumulation of stress or strain appears as a
by-product of calculation by small strain increments.
It results from the fact that the loops are not per-
fectly closed. Implicit strategies require much com-
putation time and magnify systematic errors. For ex-
ample, 100000 cycles with 100 increments per each
cycle increase systematic errors 107-times! This re-
quires a constitutive model of unreachable perfection.

The proposed model is based on an alternative ex-

plicit (Baligh and Whittle 1987) or N-type (Sagaseta
et al. 1991) formulation. Explicit models are similar
to creep laws but in place of the time t the number
N of cycles is used. We consider N as a continu-
ous variable, for instance the material ”rate” of t is
ṫ = d t /dN . Explicit models predict the accumula-
tion due to a bunch of cycles at a time. For example,
for ∆N = 25 cycles of amplitude γampl = 0.0001 we
have a direct ”explicit” formula to find the resulting
irreversible strain.

The following list shows briefly how our explicit
model works (the notation is explained in Appendix):

1. Calculate the initial stress state (from self weight
and all dead loads) using the hypoplastic model
with intergranular strain. Elastic calculation of the
initial stress should be avoided because it does not
guarantee that all initial stresses will lie within the
Coulomb cone.

2. Perform implicitly the first load cycle using the
hypoplastic model with intergranular strains and
recording the strain path. The recoverable (re-
silient) part of the deformation is calculated in ex-
plicit models in a conventional way (using many
strain increments per cycle) in order to estimate the
amplitude1.

3. Estimate the strain amplitude using the recorded

1Actually the first two cycles should be calculated. The first
(so-called irregular) cycle is very much different from all sub-
sequent ones and is not suitable for the estimation of the repre-
sentative strain amplitude. The second cycle (= first regular cy-
cle) provides much more reliable information. The accumulation
from the implicit calculation of the first two cycles is added to
the accumulation from the explicit calculation.



strain path. Having the amplitude we assume that
it remains constant over a number of the following
cycles.

4. Find the accumulation rate Dacc of strain using
Equation (2)

5. Find the stress increment ∆T = T̊∆N due to a
bunch of ∆N cycles

T̊ = E : (D − Dacc) (1)

wherein E is the elastic stiffness at average stress
Tav. In the calculations E is the linear part of the
hypoplastic model with increased shear stiffness as
explained in Sec. 4.3.6 of Niemunis (2003). In case
of large displacements the Jaumann terms must be
added to T̊. Note that no static load is applied in
this phase and the ”load increments” are actually
packages of ∆N .

The FE program redistributes stress in the course
of equilibrium iteration. Depending on the bound-
ary value problem it results in settlements or pseudo-
relaxation. It is sometimes practical to interrupt oc-
casionally the above procedure by so-called control
cycles calculated implicitly. Such cycles are useful to
check the admissibility of the stress state, the overall
stability (which may get lost if large pore pressures
are generated) and, if necessary, to modify the strain
amplitude ε

ampl (it may change due to a redistribution
of stress). Such an intermitted procedure is sometimes
called semi-explicit.

The most important part of any explicit model is the
expression for the accumulation rate Dacc caused by a
bunch (package) of strain cycles ∆N . A suitable for-
mula can found experimentally for a given strain am-
plitude and at a given average stress Tav. According
to the laboratory tests (Niemunis et al. 2003, Wicht-
mann et al. 2004a,b,c) the rate of accumulation can be
approximated as follows

Dacc = m fampl ḟN fp fY fe fπ (2)

The unit tensor m points in the direction of accumula-
tion and the functions fampl, fN , fp, fY , fe, fπ describe
the influence of the strain amplitude ε

ampl, the number
of cycles N , the average stress pav, Ȳ av, the void ratio
e, the cyclic strain history and the shape of the strain
loop. These function are discussed in the following.

A cycle is understood as a repeatable sequence of
states recorded during the application and removal of
a group of loads. Plotting t (possibly a tensorial vari-
able) upon a cycle we define its average value tav =
1
2
(t(1) +t(2)) choosing the pair (1,2) of instantaneous

values in such way that their distance reaches a max-
imum, ‖ t(1) −t(2) ‖ = max‖ t(i) −t(j) ‖. In other
words, tav is the centre of the smallest ”sphere” that
encompasses all states t of a given cycle. The scalar

amplitude is defined as tampl = max‖ t − tav ‖. A
more elaborated definition of a tensorial amplitude
(including polarization and openness of the strain
loop) is proposed in Section 3.

Note that the unspecified term accumulation is a
convenient notion that expresses both cyclic pseudo-
relaxation and cyclic pseudo-creep. They are just
different manifestations of the same physical phe-
nomenon. If stress cycles are applied we observe
cyclic pseudo-creep and if strain cycles are applied we
obtain cyclic pseudo-relaxation. It is thus natural to
speak of accumulation (a physical phenomenon) inde-
pendently of its appearance, i.e., independently of the
technical aspect how the experiment was controlled.
Moreover, many testing devices allow for mixed con-
trol so pseudo-relaxation and pseudo-creep occur si-
multaneously but in different directions.

It turns out that the phenomenon of accumulation
depends strongly on several subtle properties of soil
(distribution of grain contact normals, arrangement of
grains) which cannot be expressed by the customary
state variables (stress and void ratio) only. Therefore
some new structural variables will be proposed. The
initial values of the new state variables are somewhat
unclear, as discussed by Triantafyllidis et al. (2004).

Numerous explicit constitutive models proposed in
the literature (Barksdale 1972, Lentz & Baladi 1981,
Khedr 1985, Paute et al. 1988, Hornych et al. 1993,
Sweere 1990, Wolff & Visser 1994, Vuong 1994,
Sawicki 1987, Martin et al. 1975, Bouckovalas et
al. 1984, Marr & Christian 1981, Suiker 1998, 1999,
Gotschol 2002) are usually strongly simplified be-
cause cyclic tests are much more laborious than the
conventional ones and it is difficult to collect a suffi-
cient amount of experimental data. The authors have
often very specific applications and very special kinds
of loading in mind, e.g., considering volumetric ac-
cumulation, constant average stress Tav, linear ampli-
tudes only (in general the openness and the polariza-
tion of the strain loop may be of importance).

At the beginning of our research we chose a simple
and elegant explicit model from the literature (Saw-
icki & Świdziński 1989, Sawicki 1991) and combined
it with K-hypoplasticity (Gudehus 1996, Kolymbas
2000), a constitutive model alternative to elastoplas-
ticity. The original accumulation was purely volu-
metric, mij = − 1√

3
δij , and neglected the influence of

stress fp = fY = 1 and changes of the void ratio. The
only state variable was the number of cycles scaled by
the square of the (scalar) amplitude of the deviatoric
strain, Ñ = 1

2
‖ε∗ ampl‖2N , so that

famplḟN =
C1C2

1 +C2Ñ
(3)

and C1(e0),C2(e0) were parameters related to the ini-
tial void ratio e0. In the course of our study we were



modifying this model as new results were coming
from the laboratory (mainly triaxial and multiaxial
DSS tests). Now, after a four-year study there is
actually not much left of the original formulation
(and of its simplicity).

2 ELEMENTS OF THE MODEL

The factors appearing in (2) are discussed briefly fur-
ther in this text. They are closely related to the ex-
perimental evidence presented in the three compan-
ion papers (Wichtmann et al. 2004b,c, Triantafyllidis
et al. 2004) referred as CPTX, CPMX and CPH, re-
spectively.

2.1 Direction of accumulation m

The rate of strain accumulation Dacc is not purely vol-
umetric. A significant deviatoric accumulation was
reported in the literature (Suiker 1999). Judging by
the triaxial compression and triaxial extension tests
presented in CPTX, the direction of accumulation m
is well described by the flow rule taken from the hy-
poplastic model. For a particular version (Wolffers-
dorff 1996, Wolffersdorff 1997) of hypoplasticity

m ∼ −
[

(

F

a

)2

(T̂ + T̂
∗
) + T̂ : T̂T̂

∗ − T̂T̂ : T̂
∗
]

(4)

where the right-hand side should be normalized and
where F and a are given in Appendix.

In particular, for Tav beyond the critical state line
(CSL given by ϕc) the void ratio can increase! In con-
sequence, in the course of a pseudo-relaxation process
stress does not surpass the limit surface. FE results
were decisively improved after the deviatoric compo-
nent of accumulation had been added (the predicted
settlements were larger). The direction of the accu-
mulation was observed to be independent of the void
ratio and to become slightly more volumetric with
N (CPTX). This tendency, however, must reverse be-
cause at the maximum density further densification
is inadmissible and only deviatoric deformations may
take place. Provisionally we assume that m is a func-
tion of stress ratio T̂ only. The direction m does not
depend on the polarization of the amplitude: for cyclic
triaxial compression and for cyclic isotropic compres-
sion similar directions m have been measured, cf. Fig-
ure 13 in CPMX and Figure 19 in CPTX.

2.2 Scalar amplitude and number of cycles

In this subsection we consider in-phase (IP = propor-
tional) strain cycles which can be defined by the equa-
tion

ε = ε
av + ε

amplf(t) (5)

which means that all components oscillate along with
the same scalar periodic function, e.g. f(t) = sin(t),
varying between -1 an 1 and using a time-like pa-
rameter t. In uniaxial cycles the tensor ε

ampl has only
one non-zero component, e.g. εampl

11 6= 0, otherwise we
speak of multiaxial cycles. The out-of-phase (OOP)
amplitudes do not satisfy (5) and are discussed sepa-
rately in Section 3.

The experiments (Figure 7 in CPTX) show that the
accumulation rate is proportional to the square of the
strain amplitude. It is evident from Figure 8 in CPTX
that the accumulated strain cannot be described as a
unique function of Ñ , as proposed in Equation (3).
Therefore, in order to consider the size of the am-
plitude we should look for the second order homo-
geneous function Dacc(nεampl, . . .) = n2Dacc(εampl, . . .).
The following simple expression has been chosen

fampl =

(

εampl

εampl
ref

)2

(6)

The reference amplitude is εampl
ref = 0.8165 10−4. This

formula is suitable for purely deviatoric deformations,
ε

ampl = ε
∗ampl with εampl = ‖ε∗ampl‖, only. If the am-

plitude ε
ampl of strain contains a volumetric portion

we must treat the volumetric and the deviatoric por-
tions separately. The volumetric part of the amplitude
contributes less to the accumulation rate than the de-
viatoric one, cf. Section 2.3 in CPMX. One cannot
just substitute εampl = ‖εampl‖ into (6). Instead of (6)
we propose an alternative definition of fampl. Using
isomorphic components (see Appendix) of the strain
amplitude εampl

P and εampl
Q , the expression for fampl takes

the form

fampl =





εampl
Q +Camplε

ampl
P

εampl
ref





2

(7)

with the material constantCampl ≈ 0.5, see Section 2.3
in CPMX.

Having fampl all experimental accumulation curves
from Figure 6 in CPTX can be described by a com-
mon function fN consisting of a linear and a logarith-
mic part. The rate form of fN is

ḟN =
CN1CN2

1 + CN2 N
+ CN1 CN3 . (8)

Figure 31 in CPTX shows that expression (8) suf-
ficiently well approximates the experimental data.
Equation (8) is similar to (3) except for the linear term
CN1CN3.

Unfortunately, the product famplḟN which describes
so well all experimental curves with the number N of
cycles in (8) memorized by the material as a state vari-
able is not suitable for our purposes. Such formulation



severely contradicts the Miner’s rule (Miner 1945).
Although this rule concerns the fatigue of metals
(generalizes the Wöhler’s curve) it seems applicable
also to sands. The Wöhler’s SN-curve tells the num-
ber Nf of uniaxial cycles of a constant stress ampli-
tude S = T ampl

1 that causes failure and the (Palmgren-
)Miner’s rule describes the effect of uniaxial block-
periodic cycles (with a constant amplitude within
each block). Suppose we have several amplitudes Si

with the corresponding numbers of cycles to failure
Nf i and the number of applied cycles ni then the
Miner’s rule can be expressed by inequality

n
∑

i=1

ni

Nf i

< 1 (9)

The most important implications of the Miner’s rule
for sand are
• the sequence of application of constant-amplitude

blocks is of no importance

• the periodic strain loop can be decomposed into
several convex loops using the so-called rainflow
algorithm. These convex loops can be applied se-
quentially as separate loading processes.

Before a closer examination of the inconsistency be-
tween (8) and (9) (in order to find a better state vari-
able than N ) let us examine whether the proposition
(3) satisfies the Miner’s rule. Integrating (3) with the
initial value Ñ = Ñ0 we obtain

famplfN = CN1

[

ln(1 +CN2(∆Ñ + Ñ0))

− ln(1 +CN2Ñ0)
]

(10)

The sequence of application of packages ∆Ñ1 and
∆Ñ2, each with a different constant amplitude, is of
no importance because in both cases the final integral
is

famplfN = CN1

[

ln(1 +CN2(∆Ñ1 + ∆Ñ2 + Ñ0))

− ln(1 +CN2Ñ0)
]

(11)

and thus the Miner’s rule is satisfied. One may ask
whether sands obey the Miner’s rule so rigorously,
especially if the packages have different polarization.
However, in one special case the Miner’s rule must
be obeyed, namely for a combination of ∆N1 cycles
with ε

ampl
1 and ∆N2 with ε

ampl
2 → 0. The final accu-

mulation should be independent of the sequence of
application of these packages because it should not
matter whether we do nothing after or before applica-
tion of ∆N1 cycles with ε

ampl
1 . The cycles ∆N2 should

have no effect. Evidently, for (8) this is not the case.

Therefore the number N of cycles is not a suitable
state variable. From this point of view Ñ is a better
alternative, but it fits poorly the experimental results.
In order to solve this dilemma let us rewrite (8) in an
alternative form with a novel state variable in place of
N . First let us abbreviate ġ = fampl ḟN given by (8)
and (7) and integrate this product within the limitsN0

and N = N0 + ∆N and between g0 and g. We obtain

g = famplCN1 [ln (1 +CN2N) +CN3N ] (12)

with the initial value

g0 = famplCN1 [ln (1 +CN2N0) +CN3N0] . (13)

The variable g = gA + gB can be decomposed into
the part gA related to the adaptation of the structure
of the material and the linear part gB which becomes
dominant for large numbers of cycles:

gA = famplCN1 ln(1 +CN2N) (14)

gB = famplCN1CN3N (15)

with gA
0 = famplCN1 ln(1 + CN2N0) and gB

0 =
famplCN1CN3N0 being the respective initial values.
Our model uses rates so analogously we may write

ġA = fampl
CN1CN2

1 +CN2N
(16)

ġB = famplCN1CN3 (17)

Note that the linear part ġB requires no memory of the
material whereas the ’structural’ part ġA depends on
N . However, we do not want N to be a state variable.
The idea is to replace N in (16) by gA. The advantage
of such a replacement is that gA contains information
about N and additionally about the amplitudes of cy-
cles in the past. For our purpose we solve (14) for N
and substitute the result into (16) obtaining

ġ A = famplCN1CN2 exp

[

− gA

CN1fampl

]

(18)

This equation is equivalent to (16) only if the am-
plitude remains constant. For the above mentioned
special case (with ε

ampl
2 → 0) the Miner’s rule is

obeyed. A numerical simulation of the accumula-
tion due to two blocks of cycles with different am-
plitudes and applied in different sequences is shown
in Figure 1. The physical interpretation of gA − gA

0
is simply the norm of the accumulated strain at
fp fY fe fπ = 1 diminished by the basic accumula-
tion gB =

∫N
N ′=0 famplCN1CN3dN ′. The problem of the

determination of the initial value gA
0 is the subject of

the separate paper CPH. Unfortunately, the question
of the initial values of the state variables in explicit
models is rarely discussed in the literature.
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Figure 1. Numerical calculation and experimental verifica-
tion of the Miner’s rule. Strain amplitudes are denoted as
γ1 and γ2

2.3 Average stress and void ratio

The rate of accumulation measured in the triaxial tests
shown in CPTX depend on stress ratio T̂ and on the
mean stress p. It is convenient to treat these effects
separately using the functions fY and fp, respectively.
The rate of accumulation increases strongly with the
stress ratio η = q/p, especially if η is close to the
critical state line (CSL). This dependence can be de-
scribed using a well-known stress function proposed
in the literature (Matsuoka & Nakai 1982) as a yield
criterion. The observed accumulation rate increases
according to the following empirical function

fY = exp(CY Ȳ av2
) with CY ≈ 2 . (19)

wherein

Ȳ =
Y − 9

Yc − 9
(20)

Y = −I1I2
I3

(21)

Yc =
9− sin2ϕc

1− sin2ϕc

(22)

The stress invariants I1, I2, I3 are defined in Appendix
and the critical friction angle is denoted by ϕc. Equa-
tion (19) is based on numerous triaxial compression
and extension tests, cf. CPTX.

Increasing the mean effective stress p the accumu-
lation rate becomes smaller, viz.

fp = exp

[

−Cp

(

pav

patm
− 1

)]

(23)

wherein patm = 100 kPa and the material constant is
Cp ≈ 0.44. The experimental evidence is given in Sec-
tion 5.2 of CPTX.

Of course loose sands have higher densification
rates than dense ones. The following empirical depen-
dence was found, cf. Section 5.3 of CPTX

fe =
(Ce − eav)2

1 + eav

1 + eav
ref

(Ce − eav
ref)

2
(24)

wherein the parameters eav
ref = 0.874 and Ce = 0.52

correspond to medium coarse uniform sand. The
interesting observation can be made that the de-
pendence of the accumulation rate on pressure and
void ratio cannot (Niemunis et al. 2003) be cap-
tured collectively using the relative density re =
(e − ed)/(ec − ed) wherein ed(p) and ec(p) are the
pressure-dependent minimum and critical void ratios.
Keeping re = const the rate of cyclic accumulation
was observed to be almost proportional to p−1 (for
N = 105), i.e. Dacc decreases(!) with p. This means
that pairs (p, e) of identical cyclic rate of accumula-
tion may lie even on different sides of the critical state
line ec(p) usually described by the inclination λ in the
e− log p diagram, see Figure 2
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Figure 2. Lines of constant rate of accumulation in e −
log p diagram are differently inclined than the CSL

3 OUT-OF-PHASE CYCLES

An interesting element of the explicit description of
accumulation is the consideration of the shape (open-
ness) of the strain cycle. A similar effect is also stud-
ied in the fatigue of metals (Ekberg 2000, Papadopou-
los 1994). As already mentioned, the in-phase (IP) cy-
cles satisfy (5), whereas the out-of-phase (OOP) cy-
cles do not, for example an OOP strain cycle can be
given by the function

ε(t) = ε
av +















εampl
11 sin t 0 0

0 εampl
22 sin(t+ π

2
) 0

0 0 0















(25)



An OOP strain loop encloses some volume in the
strain space. It turns out that OOP cycles produce
more accumulation than IP cycles of the same scalar
amplitude, but less than the total effect of all IP cycles
obtained from the OOP loop by spectral decomposi-
tion, cf. Section 2.4 in CPMX. Using the example (25)
let us assume that εampl

11 > εampl
22 > 0. For the phase-shift

t0 = π
2

the scalar amplitude is simply εampl = εampl
11 .

It can be stated (analogously to observations in Sec-
tion 2.4 in CPMX) that N elliptical loops defined by
(25) produce more accumulation than N uniaxial cy-
cles with εampl

11 but less accumulation than N uniaxial
cycles with εampl

11 followed by N uniaxial cycles with
εampl
22 . Another phenomenon shown experimentally in

Section 3.1 of CPMX is an increase of the rate of ac-
cumulation after a sudden change of the orientation
of the polarization i.e. the orientation of the main axis
along which cycles are performed. This effect is de-
scribed in the following using a so-called ’back polar-
ization’.

In order to consider the openness and the polariza-
tion of strain cycles a novel definition of amplitude is
introduced. The amplitude Aε is proposed to be a sum
of dyadic products riri of the unit tensors ri which are
pointing along the maximum spans of the strain path
(loop) in the six dimensional strain space. The direc-
tions of spans are mutually orthogonal, i.e. ri : rj = δij
with i, j = 1, . . . ,6, and each dyad is multiplied by a
perimeter of a specially chosen projection of the strain
loop.

2-D object

1-D projection
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r

R
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2-D projektion

Figure 3. The directions ri and the sizes Ri of the strain
loop amplitude

Suppose that we are given a simple strain loop (a
more or less closed strain path without sub-loops). At
first it is given in form of a sequential list of discrete
strains εk, k = 1, . . . ,M recorded by a FE program
along the loop for each Gauss point. These strain
states lie in a 6-D strain space and need not be coax-
ial. For example, rotation of the principal directions of
strain also generates a loop. Usually the strain loops
are smaller than 0.1 % so small strain theory can be
used. The following steps demonstrate how the sub-
sequent projections of the strain loop, their radii and
perimeters are calculated. Later they will enter the
definition of the tensorial amplitude. The upper index

indicates the number of dimensions of the strain space
which is considered.

1. Flatten the volumetric size of the loop, so that the
size εampl

P becomes Campl times smaller. We do so
because the volumetric portion of the strain ampli-
tude contributes less than the deviatoric one.

2. Calculate the perimeter P6 =
∑M

i=1 ‖ε6(ti) −
ε

6(ti−1)‖ of the loop2 wherein M denotes the num-
ber of recorded strain states upon the loop.

3. Find the middle point ε
6
av of the smallest 6-D (hy-

per)sphere that encompasses the loop3.
4. Calculate the unit tensor r6 pointing from ε

6
av to the

most distant point ε
6(ti) of the loop. Usually there

are two points (antipodes) ”most distant” from ε
6
av.

We may choose r6 towards any of them because the
sign of ri is of no importance.

5. Project the loop onto the (hyper)plane perpendicu-
lar to r6 calculating ε

5(ti) = ε
6(ti)− r6 : ε

6(ti)r6.

6. Find the perimeter P5 =
∑M

i=1 ‖ε5(ti)− ε
5(ti−1)‖.

7. Find the middle point ε
5
av of 5-D (hyper)sphere that

encompasses the projected 5-D loop.
8. Analogously find the unit tensor r5 and the projec-

tion ε
4(ti) = ε

5(ti) − r5 : ε
5(ti)r5. Using the new

projection find P4, r4 and then P3, r3 etc.
Reduction steps from the 3-dimensional path to the 1-
dimensional path are shown in Figure 3. After a series
of projections a list of perimeters PD and orientations
rD is calculated for the dimensions D = 1 . . .6. The
orientations are all mutually perpendicular ri : rj = δij
and inequalities PD ≥ PD−1 hold.

The sense of the orientation rD must not enter
the definition of the amplitude. Therefore the dyadic
products rDrD are used. Their weighted sum

Aε =
1

4

6
∑

D=1

PDrDrD (26)

is proposed to be the definition of the amplitude. The
unit amplitude

~Aε = Aε/‖Aε‖ (27)

is called polarization. If a package of cycles with the
amplitude Aε

1 is directly followed by another pack-

age with Aε
2 such that ~Aε

1
:: ~Aε

2
= 1, the polariza-

tions are identical and no additional increase of the
accumulation rate should be generated. However, for

0 < ~Aε

1
:: ~Aε

2
< 1 the rate of accumulation (cyclic

creep/relaxation) should be increased.

2Define ε
6(t0) = ε

6(tM ) to close the loop.
3Numerically more convenient (although less accurate) is de-

termination of two most distant strains (largest span of the loop)
and choosing εav to be their mean value.



3.1 Function fπ

As shown by experiments in CPMX the phenomenon
of adaptation of soil structure to cyclic loading should
be taken into account. This section presents a draft
implementation of the effect of polarization changes.
The polarization integrated over the recent cyclic his-
tory is called back polarization π. Its evolution equa-
tion and a special correction function fπ will be pos-
tulated to account for the difference between the cur-
rent polarization ~Aε and the recent polarization π.
The degree of adaptation of the material structure to
the polarization of the current cyclic loading is ex-
pressed by the product 0 ≤ π :: ~Aε ≤ 1. The upper and
lower limits correspond to full adaptation (= slow ac-
cumulation) and to a complete lack of adaptation (=
fast accumulation), respectively. During cycles with
~Aε = const (let us call such loading c-monotonic)
adaptation is described by the evolution of π which
tends towards the current polarization, π → ~Aε. This
process manifests itself as a decrease of the accumu-
lation rate and can be expressed by the following evo-
lution equation:

π̇ = Cπ3

(

~Aε −π

)

‖Aε‖2 (28)

Back polarization tends towards the polarization of
the current amplitude π → ~Aε because Cπ3 is positive.
An increase in the rate of accumulation is proposed to
be described by

fπ = 1 +Cπ1

[

1− (~Aε :: π)Cπ2

]

. (29)

The determination of the material constants in our hy-
pothetical model is presented with examples in Sec-
tion 3.1 of CPMX.

Let us examine briefly the properties of the
polarization tensor. A special case of perfect
polarization can be generated by a long c-
monotonic package of IP cycles. In 6-D strain
space

{

ε11, ε22, ε33,
√

2ε12,
√

2ε13,
√

2ε23
}

we obtain a
6× 6 dyadic matrix

π = ~A = ~r ~r (30)

It has the spectrum {0,0,0,0,0,0,0,0,1} with the
eigenvector~r corresponds to the non-zero eigenvalue.

If the cyclic prestraining is perfectly chaotic then
the back polarization is proportional to the mean value
of ~r ~r over all directions in the 6-D space. This mean
value can be found from integration of ~r ~r over all di-
rections in the 6-D space and dividing the result by
the surface S6D = π3 of the unit 6-D hypersphere.
The result is 1

6
J6D where J6D denotes the 6-D identity

matrix. In order to obtain an isotropic tensorial polar-
ization we must just normalize the analogous result

Function typical range remarks

fampl 0. . . 2500 use (7)

ḟN (0.1 . . .0.2) 10−3 0 < N <∞
fp 1.5 . . . 0.02 10 < p < 1000 kPa

fY 1 . . . 7.4 0 < Ȳ < 1

fe 1 . . . 0.06 eref > e > 0.6

fπ 1 . . . 4 quickly declines

Table 1. Variability of different functions in (2)

obtaining

π
ISO =

1

3
J (31)

wherein J is given in Appendix. Not knowing much
about the history of a sample we may want to choose
such isotropic state π = π

ISO, to be the initial value.
It means that no orientation of the amplitude is
preferred.

4 SENSITIVITY of Dacc

In the previous sections we have presented effects
that influence the rate of accumulation. One by one
they were studied first in the laboratory and then
simple functions were formulated which approximate
the observations. The results are summarized in Table
1 in CPTX. However some readers may ask whether
all factors listed in this table are indeed necessary in
the model. Determination of their parameters may
require a considerable effort. Therefore the Table 1
in CPTX will be now supplemented by Table 1 in
this paper showing the expected variability of the
functions fampl, ḟN , fp, fY , fe, fπ for the typical range
of input parameters. Table 1 shows that all factors
examined in the experimental part of our research
may strongly influence the rate of accumulation and
their incorporation to the model seems justified.

5 FE IMPLEMENTATION

The semi-explicit model has been implemented to the
FE-program ABAQUS in the form of a user’s material
subroutine. An alternative computation algorithm (not
requiring ABAQUS ) is presented by Niemunis (2000).
The constitutive subroutine UMAT has three modes of
operation:

1. Implicit mode passes the control to the conventional
hypoplastic constitutive model. This mode is used



to find the initial state equilibrium and to perform
irregular cycles.

2. Recording mode is also an implicit mode but the
strain states the program is going through are mem-
orized for the future calculation of the amplitude.
Of course only characteristic states are written
down to reduce the memory consumption. For this
purpose some filtering criteria, e.g.~ε : ~∆ε> 0.9 can
be used, wherein by definition ε = 0 at the begin-
ning of the loop and ∆ε is measured from the recent
recorded strain.

3. Pseudo-creep mode calculates stress increments
explicitly using (1) and (2). Before the first incre-
ment in this mode is executed the amplitude Aε

must be calculated (according to the steps presented
in Section 3).

The explicit calculation is mesh sensitive due to the
fact that the rate of pseudo-creep is a function of the
square of the strain amplitude. As an illustration we
consider the case of a one-dimensional strain ampli-
tude field εampl = (1− x/2) for 0 < x < 2, Figure 4.
The conventional settlement ∆s is a linear function

1,0

1,0 1,0

x

� ampl
[%]

0,75
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0,25
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� ampl
 (x)
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Figure 4. Mesh dependence of ’explicit’ computation

of strain and therefore the number of constant-strain
elements (step-like approximation of strain) has lit-
tle effect on the integral value ∆s. The rate of cyclic
accumulation is dependent on the square of the am-
plitude and thus the approximation of the amplitude
is improved with the number of constant-strain ele-
ments and we obtain different values of settlement.

With reference to Figure 4 the accumulation

∆s =
∫ L

0
C (εappr)2 dx (32)

results in displacements ∆s(1) = 1
2
C and ∆s(2) = 10

16
C

for a one-element and a two-element discretization,
respectively. In practical FE calculations this problem
was extensively studied by Hammami (2003) showing
that the effect of discretisation is of secondary impor-
tance.

The control cycles switched on during the pseudo-
creep mode turned out to improve significantly the
results, especially for complicated boundary value
problems. If no significant redistribution of stress is
expected (e.g. FE simulation of laboratory tests) the
control cycles can be less frequent.

6 FINITE ELEMENT CALCULATION

The proposed material model was used to calculate
a centrifuge model test which was performed at our
institute (Helm et al. 2000). In the model test a strip
foundation on a freshly pluviated dense fine sand (%s

= 2,66 g/cm3, emin = 0.583, emax = 0.914, d50 = 0.21
mm, U = 1.95, ID ≈ 0.90) was cyclically loaded be-
tween 4 % and 47 % of the static bearing capacity σB

= 345 kPa. (σmin = 13.6 kPa, σmax = 163.8 kPa, σav

= 88.7 kPa). The test was performed at an accelera-
tion level of n = 20g. The geometry of the prototype
as well as the load function and the soil parameters
are shown in Figure 5. For technical reasons the foun-
dation was placed on the sand surface without em-
bedding. The sinusoidal load was applied with a fre-
quency of 0.44 Hz (prototype).

b = 1.00 m
7.70 m

9.05 m

discretized

area of soil

Sand

�  = 30˚


�  = 16 kN/m3

ID = 0.90

k0 = 0.43

N = 70,000

�  = 88.7    75.1 kN/m2+
-

t

�

Figure 5. Geometry and soil parameters of the centrifuge
model test

Figure 6 presents the obtained stress - settlement
loops (prototype) for selected cycle numbers N . A
mean amplitude of vertical displacement of sampl =
0.80 mm was measured. The application of σav lead to



a settlement of 1.4 cm below the middle of the foun-
dation. After the irregular cycle a settlement of 2.5
cm remained. During the subsequent 100,000 regular
cycles the accumulated settlement increased towards
sacc = 7.3 cm. The deformations of the foundation
subsoil during cyclic loading were monitored with a
video camera. Small layers of dyed sand were used
in order to ease the observations. Figure 7 presents
photographs before cyclic loading and after the appli-
cation of 70,000 cycles. The foundation was slightly
rotated. Zones of localized deformation at the edges
of the foundation were observed.
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Figure 6. Foundation settlement as a function of the num-
ber of cycles

before cyclic loading: after 70,000 cycles:

Figure 7. Photos of the centrifuge model before and after
cyclic loading

The model test was calculated using the finite ele-
ment program ABAQUS with the material model im-
plemented in the user subroutine UMAT. Although the
model test was performed on a fine sand the material
parameters of the medium sand used for the deriva-
tion of the material model were taken for the cal-
culation since the parameters were determined only
for medium sand yet. No initial structural accumula-
tion was assumed, gA

0 = 0, which seems reasonable
for tests performed on freshly pluviated sand. The pa-
rameters of the intergranular strains in the hypoplas-
tic material model (Niemunis 2003) used in the im-
plicit calculation were chosen such that the amplitude
of settlement sampl of the model test was reproduced.

Only the right part of the halfspace under the founda-
tion (9.05 × 7.70 m) was discretized with 4,000 four-
nodal quadrangular elements.

Figure 8a presents the resulting field of the strain
amplitude εampl. The deformations concentrated near
the foundation, thus not the whole discretised sector
is shown. The field of the settlement s after 100,000
cycles is presented in Figure 8b. The application of
σav lead to s = 0.30 cm and after the irregular cycle a
settlement of 0.59 cm remained. Thus, the residual de-
formations in the implicit calculation were much less
than in the model test (possibly due to surface im-
perfections). After 100,000 cycles a total settlement
of s = 5.18 cm was calculated below the middle of
the foundation. In Figure 9 the settlement of the mid-
dle of the foundation s is plotted versus the number
of cycles N . Only the accumulation of deformations
during the regular cycles is shown in Figure 9 and N
= 1 means after the irregular cycle. The curves s(N)
from the calculation and the model test are compared.
Although the settlements up to the end of the irregular
cycle are quite different the subsequent curve s(N) of
the FE calculation fits the model test data satisfactory.
While in the model test an accumulation of sacc = 4.8
cm was observed during the regular cycles the FE cal-
culation predicts sacc = 4.0 cm.

0


1


2


3


4


5


100 101 102 103 104 105

Number of cycles N [-]

S
et

tle
m

en
t s

 [c
m

]

model test

FE calculation
end of 

irregular

cycle

Figure 9. Accumulation of foundation settlement during
the regular cycles: FE calculation versus model test

It has to be stated that the calculation presented in
the Figures 8 and 9 does not consider yet the recent
experimental finding that the volumetric part of the
strain loop influences the accumulation rate (see
CPMX), i.e. the strain amplitude Aε was calculated
ignoring the volumetric part of the strain loop (see
the calculation schemes in Niemunis 2003, Niemunis
et al. 2003, Triantafyllidis et al. 2003). The prediction
of the accumulated settlement may become even
more precisely if the amplitude Aε is calculated via
the modified scheme presented in Section 3. Further
calculations considering the volumetric portion of the



a) Amplitude b) Settlement 

s [m] ε
ampl [-]

Figure 8. a) Field of strain amplitude εampl, b) Field of accumulated settlement sacc after N = 100,000 cycles

strain loop will follow.
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8 APPENDIX

Vectors and tensors are distinguished by bold type-
face, for example T,v or in sans serif font (e.g. E). The
symbol · denotes multiplication with one dummy in-
dex (single contraction), e.g. the scalar product of two
vectors can be written as a · b = akbk. Multiplication
with two dummy indices (double contraction) is de-
noted with a colon, e.g. A : B = tr (A · BT ) = AijBij ,
wherein tr X = Xkk reads trace of a tensor. Analo-
gously we may define double colon :: to quadruple
contraction with four dummy indices. We introduce
two fourth order unit tensors Iijkl = 1

2
(δikδjl + δilδjk)

and Jijkl = δikδjl. The brackets ‖ ‖ denote the Eu-
clidean norm. The deviatoric part of a tensor is de-
noted by an asterisk, e.g. T∗ = T − 1

3
1tr T, wherein

( 1)ij = δij corresponds to the Kronecker’s sym-
bol. Dyadic multiplication is written without ⊗, e.g.
(ab)ij = aibj or (T 1)ijkl = Tijδkl. Positively propor-
tional quantities are denoted by tilde, e.g. T ∼ D. Nor-
malized quantities are denoted by arrow and tensors
divided by their traces are denoted with hat, for ex-
ample ~D = D/‖D‖ with ~0 = 0 , and T̂ = T/tr T.
The sign convention of general mechanics with ten-
sion positive is obeyed. The superposed dot, ṫ , de-
notes the material rate (with respect to N ) and the su-
perposed circle t̊ denotes the Jaumann rate.

Only effective stresses T are used. In place of the
popular Roscoe’s variables

p = −T1 + T2 + T3

3
; q = −T1 +

T2 + T3

2

Dv = −D1 −D2 −D3; Dq = −2D1 −D2 −D3

3

we prefer to use the ’normalized’ isomorphic vari-
ables (Niemunis 2003)

P =
√

3p, Q =

√

2

3
q, (33)

DP =
1√
3
Dv, DQ =

√

3

2
Dq (34)

in order to preserve orthogonality. Note that P 2 =
‖1

3
1tr T‖2; Q2 = ‖T∗‖2 and D2

P = ‖1
3

1tr D‖2; D2
Q =

‖D∗‖2 hold. We also use the basic invariants of the
stress tensor: I1 = tr T, I2 = [T : T − (tr T)2]/2 and
I3 = detT

In the text we use a particular version (Wolffers-
dorff 1996, Wolffersdorff 1997, Niemunis 2003) of
the hypoplastic constitutive model. Although the pre-
sentation of this model is outside the scope of the
present paper we enclose (without comments) the
equations necessary to formulate our explicit accumu-
lation model.

a =

√
3(3− sinϕc)

2
√

2 sinϕc

(35)

F =

√

√

√

√

1

8
tan2 ψ +

2− tan2ψ

2 +
√

2tanψ cos 3θ

− 1

2
√

2
tanψ , (36)



wherein

tanψ =
√

3‖T̂
∗‖ , (37)

cos 3θ = −
√

6
tr (T̂

∗ · T̂
∗ · T̂

∗
)

[

T̂
∗
: T̂

∗]3/2
(38)
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d éformations permanentes sous chargements r ép ét és de
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shop: Böden unter fast zyklischer Belastung: Erfahrun-
gen und Forschungsergebnisse, Bochum, Report No.
32: 1-20.

Niemunis, A. 2003. Extended hypoplastic models for soils.
Report No. 34, Institute of Soil Mechanics and Founda-
tion Engineering, Ruhr-University Bochum.

Niemunis, A., Wichtmann, T. & Triantafyllidis, Th. 2003.
Compaction of freshly pluviated granulates under uni-
axial and multiaxial cyclic loading. In XIIIth European
Conference On Soil Mechanics and Geotechnical En-
gineering: Geotechnical problems with man-made and
man-influenced grounds, Prag: 855-860.

Papadopoulos, I. 1994. A new criterion of fatigue strength
for out-of-phase bending and torsion of hard metals. In-
ternational Journal of Fatigue 16: 377-384.

Paute, J., Jouve, P. & Ragneau, E. 1988. Modèle de
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