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ABSTRACT: In numerous FE calculations of strip foundations on sand with randomly distributed (autocorre-
lated) properties we have shown that the ratio of the differential settlement to the mean settlement is about three
times larger in case of cyclic loading than under monotonic loading. On the basis of an accumulation model it
is explained why the structure under cyclic loading is more sensitive to the heterogeneities in the subsoil than
under static loading. Some codes of practice restrict the differential settlements indirectly imposing limits on the
mean settlements. This may lead to a dangerous underestimation of constrained stresses in the superstructures.

1 INTRODUCTION

A foundation settlement may lead to a consider-
able increase of internal forces in a structure and
may affect its serviceability. For shallow foundations
wider than 1m admissible settlements (serviceability
of structure) rather than the bearing capacity usually
dictate the design (Schmertmann 1970). The tradi-
tional methods, e.g. (Meyerhof 1965), of settlement
prediction are based on elasticity theory and stiff-
ness moduli measured in oedometric tests. Unfortu-
nately, such predictions are not accurate enough. Ac-
cording to (Sievering 1979) the variation coefficient
of the settlement ratio scalc/smeasured is about 50%.
Comparative studies for the available methods (Jeya-
palan and Boehm 1986; Wahls 1997) indicate incon-
sistent predictions of the magnitude of the settlement.
Therefore in the past numerous empirical settlement
prediction methods have been proposed. They are
based on correlations between settlements and in-situ
testing results. Most frequently these correlations
are formulated for pressuremeter tests (Briaud and
Jeanjean 1994), for cone penetration tests (Schmert-
mann 1970), standard penetration tests (Alpan 1964;
Schultze and Sherif 1973), dilatometer modulus tests
(EM-1110-1-1904 1990), seismic cone penetration
tests (Fioravante, Jamiolkowski, Lo Presti, Manfre-
dini, and Pedroni 1968; Mayne 2000), or for plate
load tests (Bond 1961). They have been established
under ”usual” conditions (EM-1110-1-1904 1990).
The popularity of the empirical methods is an obvious

indicator of a poor performance of predictions based
on elasticity (let alone the Winkler model). For ex-
ample, such factors like the spatial variability of stiff-
ness, its stress dependence, plastic effects at the edges
of the foundation and small strain stiffness are often
disregarded. The evidence of misery of the classical
methods for shallow foundations is the fact that they
have been outperformed by an artificial intelligence
neural network (trained with 200 cases of actual mea-
sured settlements), cf. (Shahin and Maier 2000).

Although most structures can tolerate a substantial
uniform settlement, it is often restricted by building
codes (up to say 5 cm). Actually, it is the differen-
tial settlement that decisively affect the serviceability
of the construction in the first line. In extreme cases
distortions may endanger the structural integrity. The
limits for differential settlements are sometimes ex-
pressed by the angular distortion being the differen-
tial settlement diminished by tilting. Depending on
the type of construction the limiting angular distor-
tion can vary between 1/125 and 1/2000.

It is believed that imposing limitations on total set-
tlements the codes of practice restrict indirectly the
differences of settlements. Also in this paper we fol-
low the widely used suggestion (Skempton and Mac-
Donald 1956; D’Appolonia, D’Appolonia, and Bris-
sette 1968), that in order to limit the differential set-
tlement the total settlement should not exceed some
limit values. For example, according to (Terzaghi and
Peck 1948), most buildings (with framed structures)
can tolerate 20 mm differential settlements and since



they are unlikely larger than 75% of the average to-
tal settlement, a safe guide for buildings is to restrict
the settlements to 25 mm. According to (TM-5-818-
1-AFM-88-3 1983) the indirect means of controlling
the differential settlement on sand is to limit the total
settlement to 4 cm.

Of course, several additional aspects should be
considered in this context, in particular the suscep-
tibility to settlements, e.g. of historical buildings or
of buildings of prefabricated panels with weak fasten-
ings, etc. The construction of the foundation (isolated
pads, frames, rafts, . . . ), statically indeterminate de-
sign etc. can be of importance too. The limiting ten-
sile strains (cracks become visible) are given in var-
ious recommendations, e.g. (Padfield and Sharrock
1983; EM-1110-1-1904 1990). In some cases the ra-
dius of the curvature of the deflection line is restricted,
e.g. R > 2 km for mining regions, cf. (Smoltczyk
1990). Also the form of distortion may be relevant: an
unreinforced masonry wall in hogging is twice more
vulnerable than in sagging. The tilting is usually re-
stricted by aesthetic criteria: excessing 0.25% it be-
comes visible. A famous example of tilting is the
tower of Piza inclined by 10%.

In this paper we discuss the differential and to-
tal settlements of shallow foundations on sand due to
cyclic loading. Unfortunately, sand deposits are usu-
ally much more heterogeneous than the clayey soils.
As a result, differential settlements are likely to be
higher in sand deposits than in clay profiles (Maugeri,
Castelli, Massimino, and Verona 1998).

However, unlike clays, sands exhibit little or no de-
lay in settlements due to creep or consolidation. This
is beneficial because, the measured settlements dur-
ing the construction phase allow for some precaution.
Observing carefully the settlements during the con-
struction period (under chiefly static loading) one can
predict the future differential settlements and counter-
balance them, e.g. by corrections in the geometry of
the higher stores of the superstructure, by reinforce-
ment of the construction or by soil improvement. In
this way one can remedy a serious damage or an ex-
cessive deformation of the superstructures.

Settlements induced by cyclic loading are espe-
cially troublesome because they appear after the con-
struction is finished and precautions to equilibrate
settlements, e.g. by underpinning or compensation
grouting (”Soilfrac” technology), are difficult. Ob-
viously, repairs of under-use constructions are very
expensive. Moreover, the differential settlement due
to cyclic loading with respect to the average settle-
ment turns out to be significantly larger than in the
static case. This paper explains why a structure under
cyclic loading is more sensitive to the heterogeneities
in the subsoil than under static loading.

We investigate the differences in settlements using
a fictitious subsoil with stochastically generated (and
spatially correlated) distributions of void ratio and re-
lated soil properties. The differential settlements of

sand due to high-cycle loading (i.e. a large num-
ber N > 104 of relatively small εampl < 10−3 cycles)
are compared with the analogous differential settle-
ment due to static loading. The predictions under
both monotonous and cyclic loading are calculated
for two strip foundations under plane strain conditions
using the FE-method and suitable constitutive models
(Niemunis and Herle 1997; Niemunis 2003; Niemu-
nis, Wichtmann, and Triantafyllidis 2004a; Niemunis,
Wichtmann, and Triantafyllidis 2004b).

Since the constitutive models have been formu-
lated basing on relatively large sand samples (0.2×
0.1 m) they comprise already a kind of ”short range”
averaging of properties within a sample. A usual sam-
ple consists of millions of Voronoi cells (each com-
posed of several grains) and need not be stochastically
analysed on the granular level, (Nübel 2002). Only
the ”long range” variability of soil parameters is of
interest. By assumption, the spatial variability of the
parameters is dictated by the distribution of the void
ratio e. This distribution is assumed to be uniform
between emax and emin. The spatial correlation of the
e(x) field is discussed in Section 5.

2 VOID RATIO DISTRIBUTION

In natural sand layers the mechanical properties
may vary strongly. Also this variability may change
from site to site so there are no general rules except
that the properties should be investigated at place by
sounding. This leads to questions, about the proper-
ties to be tested and the necessary number of sound-
ings. The answer is not easy and depends on many
factors, which renders the soil engineering to be an
art as well as the science. In this paper we will not
solve this dilemma but merely demonstrate that cyclic
loading increases (about three times) the probability
of differential settlement.

The most important soil parameters depend on the
effective stress T and on the void ratio e. They de-
termine the stiffness (it increases with (trT)0.7 but
decreases with the stress obliquity T̂ = T/trT) and
the strength (dilatancy, peak friction angle). The con-
stitutive models used here are rather complex and
their comprehensive presentation is outside the scope
of this paper. For monotonic loading we use a hy-
poplastic constitutive model with intergranular strain
(Niemunis and Herle 1997; Niemunis 2003) and for
cyclic loading a high-cycle model (Niemunis, Wicht-
mann, and Triantafyllidis 2004a; Niemunis, Wicht-
mann, and Triantafyllidis 2004b). Unfortunately, lit-
tle or nothing is usually known about the spatial dis-
tribution of the stress and the void ratio in situ (in the
horizontal direction). Therefore we restrict ourselves
to the generation of stochastic fields of the void ratio
only. They cause a fluctuation of strength and stiff-
ness and eventually a fluctuation of stress. The soil



stiffness shear G depends on the void ratio

G ∼
(a− e)2

1+ e
. (1)

according to (Hardin and Black 1966) (with the ma-
terial constant a ≈ 1.8 for sand). This relatively small
variability of stiffness leads to a variability of the ini-
tial stress by the application of the self weight of
the soil. Note, however, that initially slight inho-
mogeneity of geostatic stress is growing as the self
weight is being applied: the stress increments are
proportional to stress itself (because the stiffness is
a function thereof). This feedback effect amplifies
the spatial stress fluctuations. We expect the result-
ing initial stress field to be more or less realistic. In
a static analysis of settlements on spatially random
soil (Paice, Griffith, and Fenton 1996) the variation
coefficient of the Young modulus is cited to lie be-
tween 2% and 42% with a recommended value of
30%. Unfortunately, the temporal and spatial fluctu-
ation of stress presented in the literature (Howell and
Behringer 1997; Behringer and Miller 1997; Niemu-
nis 2003) pertains usually to the level of grains, which
is of little use in the present context.

3 MONOTONIC MODEL FOR SOILS

The hypoplastic constitutive model originates from
the Karlsruhe research group, where it has been devel-
oped since the late seventies (Kolymbas 1978; Gude-
hus 1996; Wolffersdorff 1996). We use a recent ver-
sion of the model (Niemunis 2003) which considers
the improved shear stiffness (parameter ν). The Jau-
mann stress rate T̊ predicted by the hypoplastic model
can be written in the form

T̊ = fb feÊ(D− fdm̂Y‖D‖), (2)

wherein the stiffness Ê, the flow direction m̂ (=unit
tensor) and the degree of nonlinearity 0 < Y < 1 are
functions of stress obliquity T̂. The scalar barotropy
factor fb describes the increase of stiffness with the
mean stress p = −trT/3, the pyknotropy function fe
describes the decrease of stiffness with the void ratio
e and fd controls the peak friction angle depending on
p and e. The critical state concept is implemented in
the function fd .

In order to implement the increased stiffness for
the so-called ”small strain” range the hypoplastic
model (2) has been extended by adding an intergranu-
lar strain which is a tensor variable that memorizes the
direction of straining in the recent deformation history
of the material, cf. (Niemunis and Herle 1997). This
part is of importance for the settlement predictions as
well as for cyclic loading with a limited number of
cycles.

The parameters used in the FE calculation (Section
6) are given in Table 1.

ϕc hs n ed0 ec0 ei0 α β
[◦] [MPa] [-] [-] [-] [-] [-] [-]

32.8 150 0.40 0.575 0.908 1,044 0.12 1.0

R mR mT χ βR ν
[−] [−] [−] [−] [−] [−]

10−4 6.5 3 6 0.1 0.2

Table 1: Parameters of the hypoplastic model for a fine sand (a
sand commonly used in centrifuge tests in Bochum (Helm,
Laue, and Triantafydillis 2000))

4 HIGH-CYCLE MODEL FOR SOILS

Recently (Niemunis, Wichtmann, and Triantafyl-
lidis 2004a; Niemunis, Wichtmann, and Triantafyl-
lidis 2004b) we have proposed a so-called explicit-
type constitutive model for the calculation of settle-
ments due to cyclic loading. It is a high-cycle model,
i.e. packages of cycles (with a constant amplitude) are
treated as increments similarly as a fatigue-type load.
The accumulation of strain or stress is directly simu-
lated. Treating the number of cycles N as a time-like
variable the cumulative phenomena can be expressed
using the viscoplastic formalism in which the strain
accumulation per cycle Dacc is treated as a viscous
rate:

Dacc = m̂
(

εampl

εref

)2

fN fY fp fe fπ . (3)

The ”direction” of strain accumulation is given by the
flow rule m̂ = m(T̂). The intensity of accumulation
is a function of the strain amplitude ε ampl (the cru-
cial dependence in the present context), of the aver-
age stress T (via fY and fp), of the void ratio (via fe),
of the number cycles fN (soil structure effect) and of
the shape (via εampl) and the polarization of the am-
plitude (via fπ ). Of course, loose sands show higher
accumulation rates. Perhaps less obvious intuitively
is the experimental finding that the rate of accumula-
tion is higher at lower stress levels trT,

fp = exp
[

−Cp

(

pav

patm
−1

)]

, (4)

wherein Cp ≈ 0.43 is a constant and patm = 100
kPa. The amplitude is proposed to be described
by a 4-th order tensor the scalar measure of which
if εampl. This contains information about the po-
larization and the shape of the strain path within
the cycle (for example cycles consisting in the ro-
tation of the principal directions are automatically
considered). The cyclic history is described by two
parameters: the so-called back polarization tensor
and the number of cycles weighted by their ampli-
tudes. We skip further discussion of (3) and in-
terested readers are referred to the detailed descrip-



Campl εampl
ref CN1 CN2 CN3

[-] [-] [-] [-] [-]

0.54 10−4 1.21 ·10−3 0.39 5.7 ·10−5

Cp pref CY Ce eref
[−] [ kPa] [−] [−] [−]

0.43 100 2.0 0.52 0.908

Table 2: Parameters of the high cycle model for a fine sand (a
sand commonly used in our centrifuge tests in Bochum, (Helm,
Laue, and Triantafydillis 2000))

tion of the model (Niemunis, Wichtmann, and Tri-
antafyllidis 2004a; Niemunis, Wichtmann, and Tri-
antafyllidis 2004b) and of the experimental findings
about the cyclic accumulation phenomena (Wicht-
mann, T. Niemunis, and Triantafyllidis 2004; Wicht-
mann, Niemunis, and Triantafyllidis 2004; Wicht-
mann, Niemunis, and Triantafyllidis 2005). Depend-
ing on the boundary conditions the accumulation of
both stress (= ’cyclic pseudo-relaxation’) and defor-
mation (=’cyclic pseudo-creep’) may result according
to

T̊ = E : (D−Dacc −Dpl) . (5)

The plastic strain rate Dpl is necessary to prevent ex-
cessively large stress obliquities in the soil.

The parameters used in the FE calculations are
given in Table 2.

5 RANDOM MODELLING OF SOIL

Various properties of soil may be considered as
random. In the present work, the void ratio e is of
primary interest. Its scatter over a certain volume of
soil is modelled by random fields discretized on the
FE mesh.

In order to generate a random field of void ra-
tio we need the estimates of its characteristic values,
eg. the mean, the variance and the spatial correla-
tion. Such estimates may be extracted from in-situ
measurements. For example, the mean of the respec-
tive parameter of a known sample of n measurements
reads

E[t] =
1
n

n
∑

i=1

ti . (6)

Alternatively a maximum likelihood estimator (MLE)
could be used, (DeGroot and Beacher 1993; Fenton
1999). The estimator should be unbiased (the esti-
mated average of a population is equal to the mean of
the measured sample) and consistent (the dispersion
decreases with the size of a sample i.e. the number of
measurements).

First let us examine the void ratio e at a given point
x in space. For a fictitious subsoil considered here, the
mean void ratio is assumed to be ē = 0.8 and the prob-
ability density function (PDF) is chosen to be constant
and equal to 1/0.4 over the e-range from 0.6 to 1.0.
We do not use the normal Gaussian distribution here
because extremely small or extremely large void ra-
tios may cause problems in the constitutive models.
Moreover, negative void ratios are physically impos-
sible.

Let us suppose, we have a statistical sample of n
measurements of e taken at various locations xi with
i = 1, . . . ,n and the void ratio at a point xi is related
to the void ratio at a point x j. For all m pairs (i, j) of
points xi x j of a given statistical sample (set of n mea-
surements) lying at a given distance d we may quan-
tify the difference of the void ratios. Furthermore, let
this difference be isotropic, i.e. independent of the
orientation of the vector xi − x j. Having measured
the void ratio e(x) over some area we can distinguish
its trend ē(x) (a mean value, often estimated by linear
regression) and scatter e′(x):

e(x) = ē(x)+ e′(x). (7)

For simplicity, we assume that the void ratio does not
decrease with the depth, i.e. the trend to be equal to
the mean, ē(x) = 0.8. The autocorrelation of the scat-
ter e′ = e− ē could be evaluated from measurements
using the moment estimate of the isotropic autoco-
variance of e′. For a typical pair of points at distance
d it is

ρ(e′(x),d) =
1
m

n
∑

i

n
∑

j

e′(xi)e′(x j)w(xi,x j), (8)

wherein w(xi,x j) =

{

1 if ‖xi −x j‖ ≈ d
0 otherwise

, n is the

total number of points and m(d) =
∑n

i
∑n

j w(xi,x j).
For our fictitious subsoil we assume the Markovian

(exponential) spatial correlation function between the
void ratios e′ at points xi and x j at distance d = ‖xi −
x j‖ according to

ρ(e′,d) = exp(−d/θ) , (9)

wherein θ denotes the correlation length.
It is not easy to determine the correct value of θ

for a given type of soil because soil properties may
vary at many scales (fractally). Using the estimations
of θ from the literature one should select a correlation
length estimated on a similar soil over a domain of a
similar size (Fenton and Griffith 2002). Of course,
we have to choose a value between the limit cases
θ → 0 and θ → ∞ for which the void ratios are either
fully uncorrelated (statistically independent) or per-
fectly correlated, respectively. In these both extremes,
the differential settlement ∆s will vanish. (Fenton
and Griffith 2002) give some recommendations for



the choice of θ : In the problem with two footings at
distance D, the assumption θ = D would be conserv-
ative. Similarly for a single foundation of the width
B the correlation scale θ = B would be also conserv-
ative.

Instead, we decided to try out three correlation
lengths θ = 0.5,2.0 and 20.0m. Fortunately, as
we shall see, the central conclusion of this paper is
scarcely dependent on θ .

The differential settlement is calculated with the
FE method using quadrilateral elements with four
Gauss integration points each. Various possibilities
of random field discretization are reported in the liter-
ature (Matthies, Brenner, Bucher, and Soares 1997).
For simplicity reasons, we discretize the random field
of void ratios e by the FE mesh using the mentioned
Gauss points.

The field variability is described by the following
isotropic autocorrelation function:

Ci j = σ2 exp
(

−
di j

θ

)

(10)

with

di j = ‖xi −x j‖, (11)

σ =
1
2
(emax − emin), (12)

and emax = 1.0, emin = 0.6.
In the numerical example presented in Section 6

we are using 1098 elements with 4 Gauss points per
element, that results in a real symmetric covariance
matrix (4392×4392).

This matrix C is then transformed to the uncorre-
lated space by the orthogonal transformation (spec-
tral decomposition) based on its eigenvalues Λ =
diag{λ1, . . . ,λn} and an orthogonal matrix Φ,

C = Φ ·Λ ·ΦT . (13)

The matrix Φ is composed of orthonormalized eigen-
vectors (in columns, numbering same as for λ -s ),
Φ = {Φ1, . . . ,Φn}.

According to (Novak, Lawanwisut, and Bucher
2001), only a limited number na < n of the eigen-
values and eigenvectors Λ,Φ are necessary to restore
basic features of the uncorrelated covariance matrix
C with acceptable accuracy. In the present work, we
obtain satisfactory results with na = 500.

The field e′(x) is generated by using the first na
largest eigenvalues and the corresponding eigenvec-
tors Φi, i = 1, . . . ,na multiplied by random factors,
viz.

e′(x) =

na
∑

i=1

r[−1,1]
i

1
2

√

λiΦi (14)

wherein r[−1,1] is a uniform variate (random real num-
ber with constant PDF) from the range [−1,1] and λi

is the i-th eigenvalue of C. Of course one may eas-
ily find r[−1,1] = 2r[0,1]−1 using the intrinsic random
function r[0,1] provided in all programming languages.
The final field of void ratios is obtained from (7).

Although a set of Nsim fields (=simulations) e′(x)
could be generated directly using (14), with random
r[−1,1] (= Monte Carlo method) a small improvement
is yet proposed. Instead of the afore mentioned uni-
form variate r[−1,1] in (14), we apply a so-called Latin
Hypercube Sampling (LHS), (Florian 1992).

For each eigenvector i the domain [−1,1] is di-
vided into Nsim equal intervals, e.g. we use Nsim = 10
and number the intervals (-1,-0.8), . . . , (0.8,1) with
k = 1, . . .10. A random permutation (=sequence of
ks ) is generated for each eigenvector i and the mid-
point values of the intervals are set to r[−1,1] in (14).
For example, Fig. 1, if the random permutation for
the i-th eigenvector were (7,3,1,. . . ) then the values
(0.3, -0.5, -0.9, . . . ) would be used in place of r[−1,1]

in (14) in the first simulations. In a more general
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Figure 1: Latin Hypercube Sampling.

case of a nonuniform PDF we choose the intervals
in such way, that the probabilities of the void ratio
to lie within each interval k are equal. The LHS is
reported to be more effective than the direct Monte-
Carlo method, especially in combination with non-
linear finite element analysis, (Novak, Lawanwisut,
and Bucher 2001). Advantages of the Monte-Carlo
method follow from the fact that this sampling covers
uniformly the entire range of variability of a variable
of interest.

Although the multipliers r[−1,1]
i λi (treated individ-

ually) have uniform PDFs their sum (14) has not.
However, this is not a serious shortcoming, because
we do not know the exact PDF anyway. An unfavor-
able effect is that sporadically some values e(x) may
lie slightly outside of the prescribed scope [emin,emax],
which may cause problems in the constitutive equa-
tions of the soil. Therefore we have to check and cor-
rect a few peak values manually.



6 NUMERICAL ANALYSIS

In this section we investigate a plane strain bound-
ary value problem with two strip foundations of the
width 1m each at the axial distance of 6m, Fig. 2.
For the FE calculation the commercial programm
ABAQUS is adopted with user material routine, user
initial stress and user initial state variables proce-
dures.

26.0 m

13
.0

 m
1.0 m 5.0 m 1.0 m

1.0 m

� �

t

�

� ampl
� av

� ampl = 50 kPa

� av = 100 kPa

s

�

sstat scyc

Figure 2: BVP and FE mesh for two strip foundations

Using the method described in the previous sec-
tions 30 stochastic fields of the void ratio with the
corresponding fluctuations of the initial stress have
been generated. We try out three correlation lengths
θ = 0.5,2.0 and 20 m and generate 10 fields per corre-
lation lengths. Examples of such fields are presented
in Fig. 3.

Although equally loaded (at first monotonically
and then cyclically) the foundations exhibit a differ-
ential settlement ∆s which for each calculation is nor-
malized by the mean settlement s̄. The x-coordinate
of each point in Fig. 4 is the ratio ∆s/s̄ for the pair
of foundations under monotonic loading and the y-
coordinate presents the analogous ratio ∆s/s̄ under
cyclic loading (after 105 cycles) calculated with the
same material constants and using the same field of
void ratio. It can be seen from Fig. 4 that the settle-
ment s̄ due to cyclic loading is accompanied by a three
times larger differential settlement ∆s than in the sta-
tic case. An explanation of this effect lies in the nature
of cyclic accumulation in soils. The essential point
is that the cyclic accumulation is proportional to the
square of the strain amplitude, see Eq. 3, whereas the
static settlement is approximately proportional to the
load i.e. to the amplitude. Therefore cyclic accumu-
lation is a short range phenomenon (involves the soil
volume only in the vicinity of the foundation) and the
static load has a larger range (the active zone in ana-
lytical calculation of settlement is about three to four
times the width of the foundation). The probability
of finding an extreme dense zone of sand under one

correlation length 

0.5 m

Void ratio ecorrelation length 

2.0 m

correlation length

20.0 m

Figure 3: Void ratio distributions generated using different
correlation lengths θ .

foundation and an extreme loose zone under the other
one is therefore higher in the case of cyclic loading.
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Figure 4: Indirect limitation of differential settlement via total
settlement should be three times more restrictive in case of
cyclic loads. This result seems to be independent of the
correlation length θ .

7 CONCLUSION

A series of FE calculations of settlements of a pair of
strip foundations on a random (spatially correlated)
subsoil is performed applying monotonous and cyclic
loading.

From the comparisons of the differential settle-
ment under cyclic and static loading its increased sen-
sitivity to cyclic loading is demonstrated. A large



number, say > 104, of relatively small load cycles
lead to differential settlements ∆s which are about
three times larger then in the static case with the same
mean settlements s̄. In other words, the ratios ∆s/s̄
under monotonous loading were three times smaller
compared to analogous ratios caused by cyclic load-
ing. The prediction of settlements of structures due
to high-cycle loading requires therefore a thorough
testing program in-situ and a good quality constitu-
tive model for the predictions.

The settlements due to cyclic loading should be
considered as a long term soil structure interaction
problem, and should not be underestimated in the life-
time prediction of the respective structure. Admit-
tedly, the presented results do not include the compen-
satory effect of the stiffness of the superstructure and
as such do not consider this interaction. However, if
the calculation of settlements were combined with the
static analysis of the structure then (in the statically
indeterminate case) the differential settlements would
be smaller at the cost of increased internal forces in
the structure. In consequence, the life-time expecta-
tions of the structure would be reduced. The study
of this effect is underway within the Cooperative Re-
search Centre SFB 398 in the cooperation between the
projects A8 and C1. Apart from the increased differ-
ential settlements due to the small size of the active
zone under cyclic loading, the rate of cyclic accumu-
lation increases (paradoxically, cf. Section 4) under
foundations with smaller soil pressures which leads to
a positive feedback effect. This also increases the dif-
ferential settlements. The internal forces are therefore
expected to grow during the cyclic loading speeding
up the deterioration processes or even causing some
plastic hinges in the structure.
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