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Abstract

A high-cycle explicit model for the accumulation of strain in
sand due to small cyclic loading is presented. The dependence
of the accumulation rate on stress, void ratio, cyclic history
and the type of loading is discussed. In particular, the oval-
ity and the polarization of the strain path during a cycle are
considered. Attention is given to the theoretical aspects of
the constitutive description of the cumulative settlement and
to the FE-implementation. The essential experimental results
are also presented. Finally, an example of an FE-analysis of a
strip foundation under cyclic vertical loading is given.
Keywords: cyclic loading, sand, high-cycle, accumulation,
settlement, amplitude, constitutive model

1 Introduction and basic concept

A considerable displacement of structures may be caused by
the accumulation of irreversible strains in the soil due to cyclic
loading. If the number of cycles is large then even relatively
small amplitudes may endanger the long-term serviceability of
structures, especially if their displacement tolerance is small,
e.g. of communication structures like a magnetic levitation
train, watergates or wind power plants. Under undrained con-
ditions, in place of the usual densification, excessive pore pres-
sure is generated. It may lead to soil liquefaction and eventu-
ally to a loss of the overall stability. Therefore the accumula-
tion phenomenon is of practical importance. This paper deals
with the prediction of the accumulation of stress and strain
in sand for a large number (> 103) of small to moderate to-
tal strain amplitudes (< 10−3). The presented model is based
mainly on the laboratory tests carried out by the second au-
thor. A more detailed description of the test results and a
survey of similar investigations in the literature can be found
in [1, 2].

A cycle is understood as a path (a trajectory parametrized by
time) which is recurrently passed through by the state variables
(usually strain or stress) describing the material. Such paths,
sometimes referred to as loops, are caused by non-monotonic
loads. Having plotted a variable t we may define its average
value tav to be the centre of the smallest hypersphere that
encompasses all states t upon the cycle1. The amplitude of a
scalar variable is defined as tampl = max|t−tav |. A tensorial
definition of the strain amplitude is proposed in Section 3. It
describes not only the size but also the polarization and the
ovality of a cycle.
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1A slightly different definition of tav could be the middle point between
the two most distant states. Such definition leads to a more efficient
numerical implementation.

It turns out that the phenomenon of accumulation depends
strongly on several subtle properties of soil like distribution of
grain contact normals, arrangement of grains etc, which cannot
be expressed by the customary state variables (stress and void
ratio) only. Two new state variables are therefore proposed:
the cyclic preloading gA which memorizes the amount of fatigue
loading in the past and the back-polarization π memorizing the
orientation of the recent cycles. These variables are discussed
in more detail in Sections 2.4 and 3.2, respectively.
The phenomenon of accumulation consists in a summation
of small residual strains (pseudo-creep) or residual stresses
(pseudo-relaxation). For the two-dimensional case it is shown
schematically in Figure 1. If stress cycles are applied, Fig-
ure 1a, we observe cyclic pseudo-creep and if strain cycles are
applied, Figure 1b, we obtain cyclic pseudo-relaxation. Some
tests are mixed-controlled (cf. Section 3.1.3 and 3.2.3 in [3]),
so that both, pseudo-relaxation and pseudo-creep, may occur
simultaneously, Figure 1c. The unspecified term accumulation
seems, therefore, to be a convenient term covering the cyclic
pseudo-relaxation as well as the cyclic pseudo-creep. We often
speak of accumulation in this general sense here, i.e., indepen-
dently of the technical aspect how an experiment is controlled.

In the simplest case2 the proposed constitutive relation can be
expressed for large deformations by

T̊ = E : (D−Dacc), (1)

wherein T̊ is the Zaremba-Jaumann rate of the Cauchy stress,
D denotes the total stretching, E is a pressure-dependent (hy-
po)elastic stiffness and Dacc is the irreversible stretching caused
by cyclic loading or rate of strain accumulation. The notation
is explained in Appendix A. Figure 1 interprets Dacc in differ-
ently controlled tests. The number of cycles N is treated as a
continuous time-like variable, and the material ”rate” of t is
understood as ṫ = d t /dN here.
Considering the logarithmic strain ε = lnU, wherein U de-
notes the right stretch tensor, we distinguish between in-phase
(=IP) strain cycles and out-of-phase (=OOP) cycles. The IP-
cycles can be defined by the equation

ε = εav + εamplf(t), (2)

wherein εampl contains the amplitudes of the individual com-
ponents, i.e. (εampl)ij = (εij)ampl. All components of ε given
by (2) oscillate together according to the same scalar periodic
function, e.g. f(t) = sin(t) which is varying between -1 and 1.
IP-cycles that have only one non-zero eigenvalue of εampl are
termed uniaxial, otherwise they are multiaxial.
The out-of-phase (=OOP) cycles do not cannot be expressed
by (2), e.g.

ε(t) = εav +




εampl
11 sin(t) 0 0

0 εampl
22 sin(t + θ) 0

0 0 0


 . (3)

2In an FE implementation or if the cyclic loading is accompanied by
monotonic loading (5) must be used instead of (1)
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Figure 1:
(a) Stress cycles (= all stress components are prescribed and the stress loop is perfectly closed) leave residual strains.
(b) Strain cycles leave residual stresses.
(c) Mixed control tests leave both residual stresses and residual strains.
Pure accumulation (not superposed by monotonic loading) is considered and therefore Dpl can be disregarded. The superscript tm.

stands for ’measured’.

Due to the phase shift θ 6= nπ, the OOP strain loop (3) en-
closes some area in the strain space (the shadowed area(s) in
Figure 1). The shape of a strain cycle is of importance for
the accumulation (similarly as for the fatigue of metals [4, 5]).
Quantifying the OOP-cycles (Section 3) one should account
for the rotation of the principal strain axes within a cycle but
disregard the rigid body rotation. This is done if the strain ε
is calculated with respect to the material frame of reference.
In the presented model the logarithmic strain is defined with
respect to the initial material configuration (usually K0-state)
as

ε = lnU = RT · lnV ·R , (4)

wherein V and U denote the left and the right stretch tensor
and R is the rotation tensor appearing in the polar decompo-
sition of the deformation gradient3.
Displacements of structures due to cyclic loading are often pre-
dicted using settlement formulae, e.g. [6, 7]. The settlement
s(N) after N cycles is extrapolated from the residual settle-
ment s1 after the first cycle. Various empirical functions, e.g.
s(N) = s1N

C or s(N) = s1(1 + C ln N) with a material con-
stant C, were proposed in the literature. In this paper, we
argue that the accumulation depends on numerous factors,
see Section 2, which are too complicated to be lumped to-
gether into a single parameter s1. Moreover, most of the pop-
ular settlement formulas are self-contradictory (inconsistent),
as demonstrated in Appendix B.

1.1 Explicit vs conventional constitutive model

Predicting the accumulation due to cyclic loading we may choose
between two computational strategies: implicit or explicit4 one.
The conventional (= implicit) models describe each loop using
many strain increments. The accumulation of stress or strain
appears as a by-product of such calculation resulting from the
fact that the strain or stress loops are not perfectly closed (ac-
cumulation is implied) . Elastoplastic models with a single
yield surface are not suitable for the implicit approach because
they predict no irreversible strain in the elastic regime. Usu-
ally more sophisticated (e.g. endochronic [8] or multi-surface
[9–11]) constitutive formulations are used. Their practical ap-
plicability, however, is limited by the number of cycles. During

3We had to ’unrotate’ the total strain because it is defined as lnV in
the FE program Abaqus.

4Euler forward/backward integration is not meant here.

an application of a large number of cycles some inevitable cu-
mulative errors may become important. They may be caused
by the numerical implementation, by too large time steps, by
a non-conservative (hypoelastic) reversible part of the stress -
strain relation, etc. An example of a numerical error is a drift
of the average stress caused by the inaccuracy of the Euler
forward integration, Figure 2. A considerable change of stress
can be seen after 1000 perfectly closed strain loops (calculated
with 360 increments per loop) although the material model is
hyperelastic and no accumulation of stress should theoretically
appear. A perusal of a single (and seemingly closed) stress loop
would reveal that it has actually a small gap due to the inaccu-
rate integration. This systematic error is accumulated so that
the final (1000th) loop is shifted diagonally in Figure 2. Even
using 3600 increments per cycle the error is still considerable.
The multi-surface plasticity models are not free from similar
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Figure 2: Accumulation of numerical error due to explicit (Euler
forward) time integration. Theoretically no stress accumulation
should be obtained in hyperelastic materials after a closed strain
path. Euler backward integration causes an analogous error in the
opposite direction.

systematic errors. They become evident if the number of cy-
cles N is large. For example, 105 cycles with 100 increments
per each cycle may magnify systematic errors 107-times! This
requires a constitutive model of an unreachable perfection.
The high-cycle model proposed in this paper is based on an
alternative idea which is referred to as an explicit or N-type
formulation. Explicit models [?, 12–26] are similar to the vis-
coplastic ones in which in place of time t the number N of
cycles is used. The accumulation of strain due to a package
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Figure 3: The basic idea of explicit calculation of the cumulative
deformation.

of ∆N cycles of a given amplitude is predicted directly. For
example, an increment of ∆N = 25 cycles with the amplitude
εampl = 10−4 results in an irreversible strain Dacc∆N wherein
Dacc is given by the explicit formula (7). As we shall see, this
is the essential equation of the presented model. It is based on
numerous tests on medium coarse uniform sand.
The following flowchart, with reference to Figure 3, shows how
an explicit FE program works.

1. Calculate the initial stress field (from self weight and all
monotonic loads) using a conventional, e.g. multi-surface
plasticity model. It is not recommendable to calculate the
initial stress with an elastic model because it does not guar-
antee that the resulting initial stress will lie within the ad-
missible stress range (e.g. defined by Matsuoka and Nakai
[27]).

2. Calculate implicitly at least two first load cycles using a
multi-surface plasticity model or, as we do, the extended
hypoplasticity model [28]. The ”small strain” nonlinearity
of soil should be accounted for.

3. Record the logarithmic strain path during the second cycle
(=first regular cycle) at each integration point.

4. Evaluate the tensorial strain amplitude Aε (a fourth-order
tensor Aε 6= εampl ) from the recorded strain path, see Sec-
tion 3. The amplitude is assumed constant over all subse-
quent cycles, until it is recalculated in a so-called control
cycle5.

5. Find the accumulation rate Dacc of strain using (7). In the
subsequent cycles only the general trend of the accumulation
is calculated. This trend is depicted with the thick line in
Figure 3.

6. Find the Zaremba-Jaumann rate of the Cauchy stress

T̊ = E : (D−Dacc −Dpl) (5)

and the stress increment ∆T = T̊∆N caused by a pack-
age of ∆N cycles (= a single increment of the fatigue load).
The plastic strain rate Dpl may appear if a monotonic load-
ing is applied simultaneously with the fatigue loading. The
Matsuoka and Nakai [27] yield condition (M-N) with the as-
sociated flow rule is used to calculate Dpl. The rate Dacc

can be calculated first and used in the modified elastoplastic
loading criterion

n : E : (D−Dacc) > 0, (6)

5Alternatively the strain amplitude can be directly measured in situ
[29] or evaluated from a separate, e.g. dynamic calculation. During the
first 100-1000 cycles several fresh pluviated samples subjected to relatively
large constant stress amplitudes (reaching 25◦ mob. friction angle) were
observed to stiffen. This stiffening (even by 15%, [1]) during the so-called
conditioning phase cannot be explained by changes in the density, in the
stress or in the geometry of the sample only. The phenomenon of stiffening
has not been considered in the hypoplastic model as yet. This effect is

included, however, in the factor ḟN used in the explicit formula (7) for
Dacc.

wherein n denotes the outer normal direction to the M-N
yield surface. The advantage of (5) over (1) is explained
in Section 2.2. The isotropic hypoelastic stiffness E with a
constant Poisson’s ratio (≈ 0.2) and with a pressure depen-
dent Young modulus (∼ (p/patm)2/3) is used in (5). The
hyperelasticity is not obligatory in the explicit formulations
but it is of great importance [30] for implicit models6.

The FE program redistributes stress in the course of equilib-
rium iteration and, depending on the boundary conditions, the
accumulation results in settlements or in pseudo-relaxation. It
is advisable to interrupt occasionally this accumulation proce-
dure by so-called control cycles, Figure 3, calculated implicitly
in order to recalculate the strain amplitude which may change
due to a redistribution of stress or a reduction of the void ratio.
The admissibility of the stress state (which may get lost, e.g.,
due to a large isotropic relaxation under undrained conditions)
is also tested.
Numerous explicit constitutive models have been proposed in
the literature [12–26]. They are usually strongly simplified
because the required cyclic testing is very laborious and it is
difficult to collect a sufficient amount of experimental data to
cover a large range of the material behaviour. Many models
are focussed on a very specific practical application only. In
this paper a systematic and general study of the high-cycle
modelling of soil is attempted.

2 Elements of the model

As already mentioned, the essential part of the presented ex-
plicit model is the formula (7) for the rate of strain accumula-
tion Dacc. We have a good reason for expressing the accumu-
lation (in a general sense) with the strain rate Dacc and not
with the stress rate T̊

acc
, let alone the accumulated pore pres-

sure. The advantage of Dacc over the pseudo-relaxation and
the pore pressure generation is that it need not vanish with
the effective stress, i.e. for T = 0. This phenomenon is illus-
trated in Figure 4. On top of that, the pore pressure build-up

Figure 4: Experimental evidence that the accumulation of strain
continues also at vanishing effective stress T = 0, see [31]. During
cyclic loading under undrained conditions the excess pore pressure
∆u increases up to the initial effective stress σ0. Then all compo-
nents of the effective stress must vanish (the soil is liquefied). The
additional increase of volumetric strain from εv = 0.5% to εv = 4%,
measured during the subsequent isotropic reconsolidation, indicates
that the soil skeleton must have been latently densifying in the liq-
uefied stage, i.e. for T = 0.

6A hypoelastic model does not guarantee that a closed stress path
results in a closed strain path and it is refutable from the thermodynamic
point of view (enables a perpetuum mobile of the second kind).
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is unsuitable because it describes merely the isotropic part of
the pseudo-relaxation.
It has been demonstrated experimentally that Dacc depends on
a number of factors which can be treated independently within
the examined range [1, 2, 32–34]. and which can be combined
into the following product

Dacc = m fampl ḟN fp fY fe fπ . (7)

The functions fampl, ḟN , fp, fY , fe and fπ describe the influ-
ence of the strain amplitude εampl, the number of cycles N , the
average mean pressure pav, the average stress ratio, the void
ratio e, and the change of the polarization of the strain loop,
respectively. The validity of the above empirical formula has
been checked within the range of performed tests. The ampli-
tudes were varied within the range 5 · 10−5 < εampl < 5 · 10−3

and the average stresses between 50 ≤ pav ≤ 300 kPa for tri-
axial compression as well as for triaxial extension. In the fol-
lowing subsections the components of (7) are discussed.

2.1 Direction of accumulation m

The accumulation Dacc has a volumetric portion but also a sig-
nificant deviatoric component [1, 25]. Since the ratio between
the deviatoric and the volumetric accumulation has been ob-
served to be almost constant for a given stress Tav, Figure 5, it
seems reasonable to define a kind of flow rule m(Tav) = ~D

acc
.

The unit tensor m points in the direction of accumulation in
the strain space. The resulting coaxiality between Dacc and
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Figure 5: Directions m of strain accumulation were determined
from numerous cyclic triaxial tests for various stress ratios ηav =
qav/pav. The initial index of density of a sample is denoted by ID0.

T is analogous to the coaxiality of Dpl and Tav in the plas-
ticity theory. The direction m has been found independent of

the void ratio e, of the amplitude εampl and of the polariza-
tion ~Aε defined in Section 3. The flow rule may slightly vary
with increasing number of cycles N , Figure 5, but this fact has
been disregarded in the present version of the model. Judg-
ing by the triaxial tests presented in Figure 5, the direction of
accumulation m is well approximated by the associated flow
rule

m ∼ −1
3
(p− q2

M2p
) 1 +

3
M2

T∗ (8)

from the modified Cam-clay model [35] with the Roscoe’s in-
variants p, q and the critical state line inclined at M = 6 sin ϕc

3±sin ϕc
.

The experiments [1] show that the accumulation is dilative be-
yond the critical state line, |q/p| > M , which is in accordance
with (8).

2.2 Cumulative and plastic strains

The plastic stretching Dpl caused by monotonic loading and
the cumulative stretching Dacc are treated separately in (5),
although from the physical point of view they cannot be dis-
tinguished. The decomposition of the irreversible strain rate
into Dpl and Dacc is forced by the explicit strategy of calcula-
tion. Implicit models need not such separation.

To understand the usefulness of Dpl it is instructive to con-
sider a simple 1-dimensional example with a rod made of a
tension cut-off material and fixed at both ends. During a cool-
ing process (= thermic shrinkage) tensile stress may occur.
However, since no tension is allowed for, the plastic strains are
indispensable. In other words, a constitutive model of the form
Ṫ = E(D−Dthermic−Dpl) is required and Ṫ = E(D−Dthermic)
is insufficient. At first, one could expect that unlike the ther-
mic deformation, the fatigue loading does not require plastic
strains because pseudo-relaxation nudges the stress inward the
yield surface. Inferring from element tests, the stress paths
could not surpass the Matsuoka and Nakai yield surface in the
process of pseudo-relaxation because the flow rule m points to
the outside of the yield surface, Figure 5, and therefore the
relaxation T̊

acc
= −E : Dacc tends inwards. However, the ab-

sence of Dpl does lead to severe problems in FE calculations!
Tension or excessive stress ratios may appear if cyclic load-
ing is superposed by a simultaneous monotonic loading which
enforces a plastification. Even in boundary value problems un-
der a purely fatigue loading but with a strongly inhomogeneous
spatial distribution of the accumulation rate (1) can inflict ex-
cessive shear or tensile stresses. For example, it is the case if
an element that experiences little or no direct fatigue loading
itself had a strongly loaded neighbour. The plastic rate Dpl

would be indispensable in the weakly loaded element to make
it compliant with the large deformation outside.

2.3 Scalar value of the amplitude

The rate of accumulation depends essentially on the ampli-
tude which enters (7) via fampl. The factor fampl describes the
influence of the size (= scalar value) of the amplitude which
is εampl = ‖εampl‖ for IP-cycles and εampl = ‖Aε‖ for OOP-
cycles (Section 3). Figure 6 shows that the accumulation rate
is proportional to the square of the strain amplitude. This
proportionality is valid up to εampl = 10−3. A few tests with
very large amplitudes show that the accumulation rate remains
almost constant above this limit. Therefore we propose

fampl =





(
εampl

εampl
ref

)2

for εampl ≤ 10−3

100 otherwise ,

(9)
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wherein the reference amplitude is εampl
ref = 10−4. Equation (9)

has been found valid for the range 5 · 10−5 < εampl < 5 · 10−3.
In some publications [20, 36] (including our recent conference
paper [2], alas) the volumetric portion εampl

P of the amplitude is
reported to have less influence on the rate of accumulation than
the deviatoric one εampl

Q . The isomorphic strain components
εampl
P and εampl

Q are defined in Appendix A. However, careful
reinterpretation of our tests considering the membrane pene-
tration effect [37] has revealed that εampl

P and εampl
Q contribute

equally(!) to the accumulation and need not be treated sepa-

rately. Hence, εampl =

√(
εampl
Q

)2

+
(
εampl
P

)2

can be directly

substituted into (9).
We have chosen to quantify the magnitude of a cycle in terms
of the strain amplitude εampl rather than of the stress ampli-
tude T ampl for three reasons. Firstly, T ampl does not provide
the sufficient information about large amplitudes. From T ampl

alone one cannot distinguish between the cycles that are just
touching the yield surface and those which penetrate the plastic
region, Figure 7. They have the same stress amplitude but very
different strain amplitudes and cause different accumulations.
Secondly, a usage of T ampl would require a reformulation of
fp (Section 2.5) making it stronger barotropic (p-dependent).
This would be numerically disadvantageous. Thirdly, T ampl

vanishes at the limit Tav = 0, hence the phenomenon pre-
sented in Fig. 4 would be omitted.
The amplitude evaluated from the first (=irregular) cycle is
often untypical. As illustrated in Figure 8a, the strain am-
plitude obtained from an irregular stress-controlled cycle is
too large. Moreover an irregular strain-controlled cycle, Fig-
ure 8b, commenced at qav ini may strongly affect the aver-
age stress, qav ini → qav. The subsequent pseudo-relaxation
is much slower.
As already mentioned, the applicability of high-cycle models
is restricted to relatively small amplitudes, εampl < 5 · 10−3.
For larger amplitudes alternating plasticity may occur and the
rate of strain accumulation Dacc (including direction m) de-
pends essentially on the asymmetry of the strain loop. In such
case the description given by (8) and (9) becomes inaccurate.
Similarly, for stresses in the vicinity of the yield surface, even
relatively small strain cycles may cause the progressive failure
which is an accumulation much faster than the one described by
(9). For these reasons the FE routine should control whether
the yield surface is encountered during the implicit calculation
(item 2 in the flowchart in Section 1.1) or not. If so, (9) is
not applicable and the residual strain Dacc should be directly
extrapolated. This means that the estimation (7) is replaced

by Dacc = Dacc m−E : T̊
acc m

, wherein the recorded residuals
are denoted with superscript tm, cf. Figure 1c.

2.4 Cyclic history

The phenomenon of accumulation due to a given cyclic loading
cannot be described solely by the stress T and the void ratio
e. The rate of accumulation depends also on the cyclic history,
i.e. on the number and the size of cycles applied in the past.
Presumably a static preloading is also of importance [38]. The
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Figure 9: The effect of cyclic loading history on the rate of densi-
fication ė = de/dN measured during cyclic drained triaxial test.

effect of cyclic preloading is strong and should not be disre-
garded. Figure 9 shows the compaction curves of three triax-
ial samples which have different densification rates ė (rates of
change of the void ratio e) passing through the same void ratio
e = 0.629. The average stress and the amplitude are identical
so that the only reason for the observed difference can be the
cyclic preloading which renders the accumulation slower.
In order to consider the cyclic preloading two additional state
variables have been introduced: the scalar gA for the number
of cycles N and their size εampl and the tensor π for the recent
polarization. Both state variables are phenomenological, i.e.
we do not investigate whether they are related to the number
of grain contacts and their directional distribution, the spatial
fluctuation of stress, internal systems of shear bands etc. The
major disadvantage of non-physical state variables is that they
cannot be directly measured. They must be estimated by their
effects. In particular, the initial in-situ value of gA can be
correlated [34] to the liquefaction potential [39]. The discussion
of π is deferred until Section 3 and we continue with the scalar
state variable gA here.
Using a freshly pluviated sand sample, the cyclic history (num-
ber and size of all applied cycles) is known. If the number
of cycles in the past was large than the accumulation rate is
slower. For strain cycles of constant amplitude, the increase of
the total strain accumulated after N cycles, see Figure 10, can
be well approximated by the empirical formula

fN = CN1 [ln (1 + CN2N) + CN3N ] (10)

with three material constants CN1, CN2 and CN3 (the latter
is important for large numbers of cycles only). Equation (10)
has already been purified from the concurrent effects due to
changes in the void ratio, stress, etc. The rate of accumulation
decreases with N proportionally to the derivative of (10),

ḟN = CN1

[
CN2

1 + CN2N
+ CN3

]
. (11)

Unfortunately, as we shall see, the product of fampl and ˙fN

given by (9) and (11) severely contradicts the Miner’s rule [40].

5



p

q
q

ε

q

ε

2ε

2ε
ampl

2q
ampl

ampl

A B

A

A

2q
ampl
A

B

2q
ampl
B

2q
ampl
B

Figure 7: Unsymmetric stress-controlled cycles. The large cycles A (solid line) which encounter the yield surface (double line) are

poorly described by the stress amplitude qampl
A alone. The stress path B (dotted line) which approaches only the yield surface without

touching it has almost the same stress amplitude qampl
B ≈ qampl

A but the respective strain amplitudes are quite different and so are the
rates of accumulation.

(a) (b)

1

2

3

4

5

6

2q

q

ampl

2q
ampl

ampl

ε

ε

q

irreg

reg

ε
av

av ini

2

q

av 
q

7

8

1

2

3

4

5

6

q

ampl

ampl

q av

ε

ε irreg

reg2

2

εq

7

8 q
ampl2

Figure 8: (a) Unsymmetric stress-controlled cycles. (b) Unsymmetric strain-controlled cycles. Monotonic loading 1-2 is followed by the

irregular cycle (2-3-4-5) and the regular cycle (5-6-7-8). In the irregular stress-controlled cycle the strain amplitude εampl
irreg is too large.

In the irregular strain-controlled cycle the stress amplitude is too small and, which is more important, the average stress changes from
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0

0.2

0.4

0.6

0.8  Tests for fampl
 Tests for fp
 Tests for fY
 Tests for fe
 fN

over-logarithmic


region

logarithmic region

100 101 102 103 104 105

Number of cycles N [-]

�a
c
c
 /

 (
f a

m
p
l f

p
 f

Y
 f

e
 f

�) 
[%

]

Figure 10: Accumulated strain εacc divided by the functions fampl,
fp, fY , fe and fπ as a function of the number of cycles.

Originally the Miner’s rule pertains to the fatigue of metals and
generalizes the Wöhler’s curve. The Wöhler’s SN-curve shows
the number Nf of uniaxial cycles with a stress amplitude S =
T ampl

1 = const that causes failure. The (Palmgren-)Miner’s
rule describes an analogous condition for several blocks of cy-
cles with constant amplitudes within each block. Suppose we
have n blocks of cycles. In the i-th block the number of ac-
tually applied cycles is Ni and their amplitude Ai is constant.
Suppose also that we know the numbers Nfi of cycles to fail-
ure for each amplitude Ai. The Miner’s rule excludes failure if

inequality

n∑

i=1

Ni

Nfi
< 1 (12)

is satisfied. The Miner’s rule implies that:

• the sequence of application of constant-amplitude blocks
is of no importance,

• the periodic strain loop can be decomposed into sev-
eral convex loops (e.g., using the so-called rainflow algo-
rithm). These convex loops can be applied sequentially
as separate blocks with constant amplitudes.

It is controversial whether sands obey the Miner’s rule very rig-
orously. However, in one case the inconsistency between (11)
and the Miner’s rule is unacceptable, namely for a combination
of a package of N1 cycles with εampl

(1) and a package of N2 cycles

with almost vanishing amplitude εampl
(2) ≈ 0. The total accu-

mulation should be independent of the sequence of application
of these packages because it does not matter whether we do
nothing after or before the actual loading with εampl

(1) > 0. The
vanishingly small cycles should have no effect at all. However,
(11) unwisely disregards the sizes of amplitudes in the past.
A state variable memorizing the number of cycles together with
their amplitudes is therefore required. Though a simple con-
cept [20] of using the product

(
εampl

)2
N instead of N in (11)

6
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obeys the Miner’s rule, it is in conflict with (9), cf. [32]. The
variable gA, proposed in the following, is a compromise solu-
tion. We consider the product of fampl and ḟN denoting it as
ġ = fampl ḟN . Functions fampl and ḟN are further on given by
(9) and (11). Note that only a part of ġ depends on N namely
ġA = famplCN1CN2/(1 + CN2N). Integrating ġ with respect
to N one obtains

g =

=gA

︷ ︸︸ ︷
famplCN1 ln (1 + CN2N)+

=gB

︷ ︸︸ ︷
famplCN1CN3N (13)

The idea is to reformulate (11) replacing N by gA. For this
purpose we solve gA = gA(N) for N and substitute the result
into the expression for ġ, viz.

ġ = famplCN1CN2 exp
(
− gA

CN1fampl

)
+ famplCN1CN3, (14)

wherein fampl refers to the current amplitude and gA contains
the information about the past amplitudes and the respective
numbers of cycles. By this expedient the Miner’s rule is sat-
isfied at the limit of very small amplitudes and (11) remains
valid for the special case of εampl = const.
A numerical simulation of the accumulation caused by two
blocks of cycles with different amplitudes and applied in differ-
ent sequences gives almost the same total accumulation, so it
is in agreement with the Miner’s rule and with the experiment,
see Figure 11.

2.5 Average stress and void ratio

The rate of accumulation depends on the average stress ratio
T̂

av
= Tav/tr (Tav), on the average mean stress pav and the

void ratio e. It turns out that one can treat these effects sepa-
rately and use the product fY fp fe of the respective functions.
As it might be expected, the rate of accumulation increases
with the stress obliquity, especially if the yield surface is ap-
proached. This dependence, Figure 12, can be approximated
by

fY = exp(CY Ȳ av) with CY ≈ 2 (15)

wherein

Ȳ =
Y − 9
Yc − 9

, Y = −I1I2

I3
and Yc =

9− sin2 ϕc

1− sin2 ϕc

. (16)

The stress invariants I1, I2, I3 are functions of T̂
av

defined in
Appendix A and the critical friction angle is denoted by ϕc.
The accumulation rate becomes smaller(!) with pav. The ex-
perimental results, Figure 13, can be approximated by

fp = exp
[
−Cp

(
pav

patm
− 1

)]
(17)

wherein patm = 100 kPa and the material constant is Cp ≈
0.43. The validity of (15) and (17) has been tested for 50 ≤
pav ≤ 300 kPa. Of course, loose sands can be compacted easier
than dense ones. This is confirmed by experimental results,
Figure 14, which can be approximated by

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
(18)

with the material constants eref = 0.874 and Ce = 0.54. The
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Figure 15: Lines of constant rate of accumulation in the e− ln p di-
agram are differently inclined than the CSL. The notions ’loose’ and
’dense’ are pressure-dependent in the critical state soil mechanics.
For cyclic accumulation this dependence is not analogous.

factors fpfe cannot [32] be described using the ’distance to the
critical state line’ in the e − ln p diagram. For a given void
ratio e, sand contracts faster under monotonic shearing when
p is larger. Under cyclic loading it is vice versa, see Figure 15.

2.6 Sensitivity of Dacc

In the previous sections we have presented various factors that
influence the rate of accumulation. They have been examined
in the laboratory and, one by one, approximated by simple
formulas. A legitimate question is whether all these factors
are really necessary in the model, because the determination
of the material constants requires a considerable effort7. Ta-
ble 1 summarizes the presented results showing the expected
variability of the functions fampl, ḟN , fp, fY , fe and fπ for the
typical range of input parameters.
Evidently, all presented factors may strongly influence the rate
of accumulation and therefore their incorporation into the model
seems justified.

3 Out-of-phase cycles and polariza-
tion

The rate of accumulation depends on various properties of the
strain loop including its orientation in the strain space (= po-
larization) and its ovality (= shape). It is also important how

7In the continuation of this work we intend to facilitate the deter-
mination of the material constants giving correlations to the angularity,
asperity and to the grain size distribution.
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many dimensions of the strain space are penetrated by the
OOP strain cycle.
Practical cases involving OOP cycles are not rare, e.g. Rayleigh
waves, moving vehicles, etc. Even during conventional cyclic
triaxial tests with a constant cell pressure OOP cycles may
(unintentionally) occur due to the variable dilatancy. Unfortu-
nately, OOP cycles cannot be performed easily in the labora-
tory and they are rarely addressed to in the literature [2, 41].
Our goal is to incorporate the information about the shape
and the polarization of the strain loop into the novel tensorial
definition of the strain amplitude Aε. It is based on tests per-
formed in the triaxial cell with periodic changes of both, lateral
and axial stress. Moreover, several special tests have been done
using an extended direct simple shear (DSS) device [2].
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3.1 Tensorial amplitude Aε

The OOP cycles produce more accumulation than the IP cy-
cles of the same size, e.g. the accumulation caused by the loop
(3) with the phase shift θ = 90◦ is larger than the accumula-
tion due to an IP loop of the size max(εampl

11 , εampl
22 ), see Figure

16. According to several DSS and triaxial tests [2], the accu-
mulation caused by two-dimensional harmonic OOP cycles is
equivalent to the total effect of the orthogonal IP cycles into
which the strain loop could be decomposed. In particular, the
accumulation caused by two-dimensional cycles (3) could be
estimated using fampl ∼ (εampl

11 )2 + (εampl
22 )2. Analogously, for

an OOP cycle

ε(t) = εav +




εampl
11 f11(t) εampl

12 f12(t) εampl
13 f13(t)

εampl
21 f21(t) εampl

22 f22(t) εampl
23 f23(t)

εampl
31 f31(t) εampl

32 f32(t) εampl
33 f33(t)


 (19)

with six harmonic functions fij(t) = sin(ωt + θij), i.e. with
a common period 2π/ω but with various phase shifts θij , the
size of the amplitude can be evaluated from the norm of the
matrix composed of the amplitudes, i.e.

εampl =
√

εampl
ij εampl

ij (20)

Note that εampl
ij denotes the amplitude of the ij-th component

of strain, εampl
ij = max|εij(t)−εavij | and not the ij-th component

of a ”tensorial amplitude”.
Now, a generalization of (20) for arbitrary periodic functions
fij is proposed, i.e. the oscillations need not be harmonic.
Moreover, if the accumulation is investigated using the FE
method then the analytical form (19) is not known. Suppose,
we are given a strain loop in form of a sequence of discrete
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Function Mat. constants typical range remarks
of the function response

fampl =

(
εampl

εampl
ref

)2

or (9) εampl
ref 10−4 0. . . 100

ḟN =
CN1CN2

1 + CN2 N
+ CN1CN3 CN1 3.4 · 10−4 (0.1 . . . 0.2) 10−3 0 < N < ∞

CN2 0.55
CN3 6.0 · 10−5

fp = exp
[
−Cp

(
pav

patm
− 1

)]
Cp 0.43 1.5 . . . 0.02 50 ≤ p ≤ 300 kPa

patm 100 kPa
fY = exp

(
CY Ȳ av

)
CY 2.0 1 . . . 7.4 0 < Ȳ < 1.1

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
Ce 0.54 1 . . . 0

eref 0.874
fπ = 1 + Cπ1

[
1−

(−→
Aε :: π

)]
Cπ1 4.0 1 . . . 4 quickly declines

π + ∆π = R : π with (24) Cπ2 200

Table 1: Summary of the partial functions fi and a list of the material constants Ci for the tested sand.

strains ε(tk), k = 1, . . . , M recorded by an FE program at a
Gauss point. In order to formulate a suitable definition of the
tensorial amplitude Aε we keep in mind the following observa-
tions:

• The shape of the strain cycle, Figure 16, influences the
accumulation rate.
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• The orientation (= polarization) of the cycle in the strain
space is of importance, Figure 17. A sudden change of the
polarization may increase the rate of accumulation [2].

• The strain states upon a cycle need not be coaxial and
therefore the paths ε(t) are 6-dimensional.

• The size of the 6-dimensional strain path must be de-
scribed by 6 extents (further called spans).

• Polarization cannot have a sign, i.e. it has a direction
but no sense of the direction.
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• A change of circulation has no effect. Figure 18 does not
show any change of the accumulation rate after the cir-
culation was changed from the clockwise © to the coun-
terclockwise ª,

From a recorded cycle ε(tk) with k = 1, . . . , M we may deter-
mine the pair of the two most distant points, say ε(ta) and
ε(tb). The span of the cycle is quantified by its size 2R(6) =
‖ε(ta) − ε(tb)‖ and its orientation ~r(6) = (ε(ta)− ε(tb))~. The
upper index t(i) corresponds to the maximum possible number
of dimensions of the loop, e.g. the original strain path (before
flattening) can be at most six-dimensional, ε(6) = ε. In order
to find the second longest span the strain loop is projected onto
the hyperplane perpendicular to ~r(6). It results in the flattened
strain trajectory ε(5) = ε(6)−~r(6) : ε(6)⊗~r(6) which has at most
five dimensions. The span of the flattened trajectory can be
determined analogously and described by R(5) and ~r(5). The
flattened loop is subjected to the subsequent projection, this
time along ~r(5), etc. Of course R(6) ≥ R(5) ≥ · · · ≥ R(1) holds.
The tensorial amplitude Aε is proposed to be defined as the
following sum

Aε =
6∑

i=1

R(i) ~r(i) ⊗~r(i) . (21)

collecting all spans8. Briefly speaking, the described method

R


r

r


r
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(3)

Projection of  
�
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Projection of  �(t)  from 2D to 1D 


Figure 19: The directions ~ri and the sizes R(i) of the strain loop.

consists in a gradual degeneration of the strain path in order
to determine its spans. The sense of the direction of ~r(i) is
of no importance, which is obvious from (21). For numerical
efficiency the calculation can be aborted if the size of the subse-
quent span is negligible (say less than 10% of the largest span).
Projections from a 3-dimensional path to the 1-dimensional
path are shown in Figure 19.

From the above algorithm a list of radii R(6) ≥ R(5) ≥ · · · ≥
R(1) and a list of mutually orthogonal orientations:
~r(6),~r(5), . . . ,~r(1) are obtained9. Substituted into (21) they
constitute the tensorial amplitude. The amplitude Aε is a 4-th
order tensor which has the eigenvalues R(i) and the correspond-
ing eigentensors ~r(i).
The normalized amplitude

~Aε = Aε/‖Aε‖ (22)

is called polarization and the norm

εampl = ‖Aε‖ =
√(

R(6)
)2 +

(
R(5)

)2 + · · ·+ (
R(1)

)2 (23)

8An analogous definition using the 1
4
-th of the perimeters P (i) of the

loops instead of the radii R(i) lead to a worse approximation of the ex-
periments.

9A fortran-90 implementation of the above algorithm is available from
the first author.

is the scalar amplitude. For harmonic cycles of type (19), def-
inition (23) simplifies to (20). This can be demonstrated with
a simple Mathematica script

degenerate[epsilon_]:=(* argument is a list of functions of t *)
Module[
{rr, solution, nmax, rrmax, tmax, polarization,R,degenerated},
rr = epsilon.epsilon;
solution = NSolve[Evaluate[D[rr, t] == 0], t];
nmax = Length[solution];
rrmax = Table[0, {nmax}];
Do[rrmax[[i]]=Evaluate[rr/.solution[[i]]],{i,1,nmax}];
tmax = t /. solution[[Ordering[rrmax][[nmax]]]];
p = epsilon /. t -> tmax;
polarization = p/Sqrt[p.p];
R = Sqrt[ Max[rrmax] ];
degenerated = epsilon-polarization*(epsilon.polarization);
{R, polarization, degenerated}
]

example = {e1->3, e2->1, e3->2, th2->Pi/3.0, th3->Pi/6.0 };
epsilon3 = { e1 Sin[t], e2 Sin[t+th2], e3 Sin[t+th3]} /. example;
{R3, p3, epsilon2} = degenerate[epsilon3];
{R2, p2, epsilon1} = degenerate[epsilon2];
ParametricPlot3D[epsilon3, {t, 0, 2 Pi} ];
ParametricPlot3D[epsilon2, {t, 0, 2 Pi} ];
R3^2 + R2^2 == e1^2 + e2^2 + e3^2 /. example

3.2 Back polarization π and function fπ

If a package of cycles with the amplitude Aε
(1) is directly fol-

lowed by another package with the amplitude Aε
(2) with the

same polarization, i.e. ~Aε

(1)
:: ~Aε

(2)
= 1, no correction of the

accumulation rate is needed (fπ = 1) except for fampl. How-
ever, if the polarization has changed then the above product

may become significantly smaller (in the extreme case ~Aε

(1)
::

~Aε

(2)
= 0) and then the rate of accumulation is increased

(fπ > 1), Figure 17. The function fπ which enters (7) takes
this effect into account.
Let us introduce the 4-th rank back polarization tensor π which
represents the polarization in the recent history of cyclic defor-
mation. The rate of accumulation is proposed to be a function
of the angle α = arccos(~Aε :: π) between the current polariza-
tion ~Aε and π, Figure 20.

The product 0 ≤ π :: ~Aε ≤ 1 reflects the degree of adaptation
of the soil structure to the current polarization. During cy-
cles with ~Aε = const the tensor π is evolving, asymptotically
approaching the current polarization, π → ~Aε. Since both π

and ~Aε are unit tensors the evolution of π is a kind of rotation
diminishing the angle α, Figure 20.
The angle α is proposed to evolve according to

α̇ = −Cπ2 α (εampl)2 (24)

meaning that the rate of change of α is proportional to −α
and to the square of the amplitude. The constant Cπ2 is posi-
tive so the back polarization indeed tends towards the current
polarization, π → ~Aε. In order to update π we rotate it,

π + ∆π = R :: π, (25)

by the angle ∆α = α̇∆N , wherein the rotation operator is
defined by

R = (cos ∆α− 1)(~µ⊗ ~µ + ~ν ⊗ ~ν) + sin∆α(~ν ⊗ ~µ− ~µ⊗ ~ν) + J (26)

and where µ = ~Aε + π and ν = ~Aε − π denote mutually or-
thogonal tensors constructed on the hyperplane perpendicular
to the rotation axis. J denotes the 8-th rank identity tensor.
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Figure 20: Evolution of π can be seen as a rotation in 6-D space.

An increase in the rate of accumulation can be described by
the factor

fπ = 1 + Cπ1 (1− cosα) . (27)

The material constants Cπ1 and Cπ2 can be determined from
an increased accumulation rate due to a rapid change of polar-
ization, Figure 17. The presented tests have been carried out
in our multiaxial direct simple shear (DSS) device. Its novelty
lies in a possibility of the lower end plate to move (cyclically)
along an arbitrary horizontal trajectory, [2].
Let us begin a DSS test applying a large number of ε13-cycles,
Figure 17. At first the back polarization tensor π is unde-
termined but according to (24) it must tend asymptotically
(with N) to the stationary value π = ~Aε corresponding to
fπ ≈ 1. After several hundred cycles π may be expected
to have reached this asymptotic value. Then the polariza-
tion ~Aε of the applied loading is rapidly rotated, whereas π
is left unchanged. In Figure 17 the ε13-shearing is followed
by the orthogonally polarized ε23-shearing. This change of
polarization corresponds to α = 90◦. According to (27) the
rate of accumulation of the axial strain recorded during the
test must increase fπ = (1 + Cπ1)-times with respect to the
rate of accumulation under the previous ε13-cycles. Know-
ing this increase one can determine Cπ1. Further, it can be
seen from Figure 17 that the additional rate of accumula-
tion declines with N vanishing completely after several hun-
dred cycles. The solid curve corresponding to ε23-cycles be-
comes parallel to the dashed curve of ε13-cycles. The con-
stant Cπ2 can be found fitting the measured curve fπ(N) with
fπ(N) = 1 + Cπ1

[
1− cos

(
α0 exp

[−Cπ2(εampl)2(N −N0)
])]

for N ≥ N0, wherein N0 is the number of cycles prior to the
rapid change of polarization. This formula can be easily de-
rived integrating α̇ from (24) with respect to N and substitut-
ing the result (i.e. α) into (27).
For in-situ soils subjected to a vertical cyclic preloading π may
be initiated with

π = ~Aε = ~r⊗~r , (28)

wherein ~r corresponds to the vertical compression. The spec-
trum of π is {0, 0, 0, 0, 0, 0, 0, 0, 1} and the non-zero eigenvalue
corresponds to the prescribed eigenvector ~r. Another extreme
example could be a fresh sand fill with a perfectly isotropic
structure, i.e. with no privileged direction of cyclic strain. The
corresponding back polarization

πiso =
1
3
J (29)

can be obtained integrating the dyadic product ~r ⊗ ~r over all
directions in the strain space and dividing the result by the
surface of the 6-dimensional hypersphere.

3.3 Interference of amplitudes from several
excitation sources

Suppose we have two sources, (1) and (2), of cyclic loading si-
multaneously causing deformations at a point of interest. Since

the sizes, frequencies and polarizations of the strain loops from
the individual sources may be quite different the resulting strain
path may be very complicated. Due to the quadratic de-
pendence of the accumulation rate on the strain amplitude,
‖Dacc‖ ∼ (εampl)2, described by the function fampl the super-
position

fampl(A(1+2)
ε ) ?= fampl(A(1)

ε ) + fampl(A(2)
ε ), (30)

of the accumulation rates is not evident, unless the amplitudes
are mutually orthogonal and of harmonic type as defined in
(19). With A

(1)
ε :: A

(2)
ε = 0 and with identical frequencies,

ν(1) = ν(2) the accumulation rate is proportional to
∥∥∥A(1)

ε + A(2)
ε

∥∥∥
2

=
∥∥∥A(1)

ε

∥∥∥
2

+
∥∥∥A(2)

ε

∥∥∥
2

. (31)

Hence, the accumulations from orthogonal harmonic cycles are
additive.
Another special case is the interference of two harmonic oscilla-
tions of the same frequency and proportional amplitudes A

(2)
ε =

λA
(1)
ε . The accumulation rate is proportional to

(
εampl (1+2)

)2
=

(1 + λ2 + 2λ cos∆θ)
∥∥∥A

(1)
ε

∥∥∥
2

wherein ∆θ is the phase differ-
ence between the signals and 2λ cos∆θ denotes the interfer-
ence effect. For the sake of simplicity, we assume further
2λ cos ∆θ = 2λ which may lead to overestimations of the ac-
cumulation rate. In the following the above special cases will
be generalized.
In 1-D fatigue models the peaks of the strain path ε(t) are
often paired into so-called rainflow cycles, each consisting of a
local minimum and a maximum. The pairs are counted and
substituted into (12) according to their size. For n-dimensional
problems an analogous method of the separation of cycles is
known as multiaxial rainflow counting. The peaks are detected
by the unloading criterion using a construction similar to the
one of the ’multi-surface plasticity’. The size of a sub-cycle is
defined to be the diameter of the corresponding subsurface. We
have not decided to use this method for two reasons. Firstly,
a large common multiple of the frequencies ν(1) and ν(2) may
render the repeatable sequence of loading very long. Secondly,
the multiaxial rainflow counting can be excessively sensitive to
small changes in the input strain path. For example, Figure 21,
if one slightly modified a circular strain cycle forming a shallow
(but long) concavity then such unloading could be interpreted
as an additional sub-cycle of a considerable size.

ε

ε

1

2

ε

ε

1

2

 

RS = reversal surface  

=  reversal point = strain path 

RS-1
RS-1

RS-2
RS-3

Figure 21: A multiaxial rainflow counting algorithm has a short-
coming: a relatively small modification of the strain path generates
the reversal surface RS-2 of a considerable size. RS-2 is counted as
a sub-cycle.

Dealing with interferences of cycles from several (i = 1, . . . , m)
sources of the same frequency we propose just to add all am-
plitudes. In order to explain this approximation let us con-
sider two oscillations with identical frequency ν(1) = ν(2) but
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different amplitudes A
(1)
ε 6= A

(2)
ε . Let A

(1)
ε denote (by conven-

tion) the dominating amplitude, i.e. εampl (1) > εampl (2). It
is legitimate to decompose the second amplitude A

(2)
ε into two

orthogonal parts

A(2)
ε = A(2)‖

ε + A(2)⊥
ε , (32)

wherein the part A
(2)‖
ε is parallel to A

(1)
ε . It can be found by the

projection of A
(2)
ε onto the direction of the dominant amplitude

A
(1)
ε , viz.

A(2)‖
ε = (~A(1)

ε :: A(2)
ε )~A(1)

ε = λA(1)
ε (33)

As already mentioned, accumulation rates due to orthogonal
amplitudes A

(2)⊥
ε and A

(1)
ε are additive. Now, let us examine

the square of the Euclidean norm of the sum of the amplitudes
∥∥∥A(1)

ε + A(2)
ε

∥∥∥
2

=
∥∥∥(1 + λ)A(1)

ε + A(2)⊥
ε

∥∥∥
2

=

(1 + λ)2
∥∥∥A(1)

ε

∥∥∥
2

+
∥∥∥A(2)⊥

ε

∥∥∥
2

(34)

In order to estimate the joint contribution from several os-
cillations we may just add (component-wise) their amplitudes.
This ”approximate” superposition requires the aforementioned
assumption 2λ cos∆θ ≈ 2λ pertaining to the phase shift.
If the interfering oscillations have different frequencies then the
correction factor

√
νi/ν1 should be applied. Hence, the final

expression has the form

Aε =
m∑

i=1

√
νi

ν1
A(i)

ε . (35)

The number of cycles (variable N) is common for all oscillations
and it is dictated by the frequency ν(1) of the dominant cyclic
loading. Correction (35) is not strict. This approximation
has been derived using an older explicit model [20] based on
the approximation ḟNfampl = CN1CN2/(1+CN2Ñ) with Ñ =(
εampl

)2
N .

4 FE implementation

The presented model has been implemented as a user’s material
model (= fortran routine umat) into the commercial FE pro-
gram Abaqus [42]. Abaqus uses the implicit time integration
and the full Newton solution technique. The purpose of umat is
to update the stress and all user-defined state variables basing
on their current values and on the strain increment. Moreover
umat should return the tangential constitutive stiffness (Jaco-
bian matrix) because the total stiffness matrix is recalculated
in every iteration (full Newton). The strain increment is being
improved in the course of the equilibrium iteration. During this
iteration umat obtains the state variables relevant to the begin-
ning of the increment, i.e., no partial updates are performed
during the iterations. This is advantageous in particular for
cyclic problems because no artificial (numerical) unloadings
are possible within a single increment.
The fortran subroutine umat has three modes of operation:

1. Implicit mode: umat delegates the calculation to the ’im-
plicit umat’ treated as a subordinated procedure. As the
’implicit umat’ we use a version of the hypoplastic consti-
tutive model with the so-called intergranular strain (cf. [28]
and [3] Sections 2.5, 4.1 and 4.3.6) The material constants
used in calculations are listed in Table 3. The implicit mode
is used to find the initial state equilibrium and to perform
irregular cycles. The numerical implementation of hypoplas-
ticity is discussed in [3] in Section 4.1.3.

2. Recording mode: umat works in the implicit mode (hypoplas-
ticity) but additionally the strain path is memorized. Only a
few characteristic states need to be recorded. Several filter-
ing criteria have been devised to economise on the computer
memory. The recording mode provides the input data for
the calculation of the field of strain amplitudes.

3. Pseudo-creep mode: umat calculates stress increments ex-
plicitly using (5) and (7). Before the first increment is exe-
cuted in this mode, the amplitude Aε is evaluated.

The subroutine umat can recognize the modes of operation by
the number of the step10.
The recording of the strain path is schematically illustrated
in Figure 22. Only several strain states (marked with filled
circles) are recorded, namely the first one and those which
satisfy the condition

cosβ = ~εR : ~∆ε > 0.9 and ‖εR‖ > 10−5 , (36)

wherein εR is measured from the recently recorded strain and
∆ε denotes the current strain increment, Figure 22. Full ten-
sors ε(tk) must be recorded because they can be non-coaxial.
The explicit calculations are mesh-size dependent if the accu-
mulated strain (in particular the function fampl) is assumed
constant over an element. It is recommended [43,44] to choose
elements with quadratic shape functions. Compared to the vis-
coplasticity, the accumulation rate Dacc is not very sensitive
to changes in stress and void ratio. Since the numerical con-
vergence does not pose serious problems in the FE implemen-
tation, a simplified tangential stiffness is used. In particular,
the terms (∂Dacc/∂T) : (∂T/∂D) and (∂Dacc/∂e)(∂e/∂D) are
negligible compared to (∂T̊/∂D) and hence disregarded. If the
loading criterion (6) is satisfied the elastoplastic stiffness Eep

instead of E enters the Jacobian matrix. In the pseudo-creep
phase we use

∆gA = famplCN1 ln
[
1 + CN2∆N exp

( −gA

famplCN1

)]
(37)

in place of ġA∆N given by the first term of (14). This enhances
the accuracy of the calculation for large increments ∆N . The
pseudo-creep mode can be seen as an initial strain problem
consisting in the determination of the displacement field from
a given strain field. Integration of the prescribed strains into
displacements may generate self-stresses. The self-stresses of
physical origin are caused by the incompatibilities of the strain
field

eimkejnlεkl,mn 6= 0ij . (38)

This expression simplifies to εacc11,22 + εacc22,11 − 2εacc12,12 6= 0 for
plane strain problems. Considerable ”artificial” self-stresses
may be caused by the FE solution method (a problem anal-
ogous to locking). If poor shape functions are used, the pre-
scribed strains cannot be matched to the nodal displacements.
In order to alleviate this problem we use 8-nodal plane strain
elements with reduced integration [45].

5 Example of FE-calculation

The proposed material model has been used to simulate a cen-
trifuge model test (under increased gravity of 20g), Figure 23.
In this test [46] a strip foundation (with a prototype width
b = 1 m) was placed without embedment on a freshly pluvi-
ated dense fine sand (%s = 2,66 g/cm3, emin = 0.575, emax =
0.908, d50 = 0.21 mm, U = d60/d10 = 1.95, ID ≈ 0.90) and
cyclically loaded between 4 % and 47 % of the static bearing
capacity of 345 kN. The vertical load was chosen as Qav = 88.7
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Figure 22: Recording of strain states along the loop.
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Figure 25: a) Field of strain amplitude εampl, b) Field of accumulated settlement sacc after N = 100,000 cycles
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Figure 23: Geometry of the prototype and soil parameters of the
centrifuge test.

kN, Qampl = 75.1 kN and the frequency was 0.44 Hz. Several
load-settlement curves generated by the cycles 1-100, as well
as the cycle 500, . . . are plotted in Figure 24 (prototype scale).
The vertical displacement amplitude was sampl = 0.8 mm and
the accumulated settlement after N = 105 cycles was s = 7.3
cm.
The sand used in the centrifuge test was similar (but not identi-
cal) to the laboratory sand described in this paper. Therefore
several material constants CN1 = 1.21 · 10−3, CN2 = 0.39,
CN3 = 5.7 · 10−5, Ce = 0.52 and eref = 0.908 have been
determined in additional tests. The remaining constants are
assumed equal to the ones of the laboratory sand, see Table

10Abaqus applies loads via steps. Each step may consist of many in-
crements and each increment may need many equilibrium iterations.
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Figure 24: Settlement of the foundation in the centrifuge test as a
function of the number of cycles.

2. The hypoplasticity constants in Table 3 have been deter-
mined from standard laboratory tests except for mT , mR and
βR which had been taken from the literature [3,28,47] and then
slightly adjusted to improve the simulation of the second cycle
of the centrifuge test (estimation of amplitude).
The FE-calculation was commenced from the geostatic stress
with K0 = 0.43. The initial cyclic history has been assumed
gA = 0 because the centrifuge test was performed on freshly
pluviated sand. Only a half of the 18.10 × 7.70 m subsoil
(prototype dimensions) has been discretized taking advantage
of the symmetry. Quadrilateral 8-nodal elements have been
used with reduced integration and an hourglass mode control.
Figure 25a presents the resulting field of the strain amplitude
εampl. The field of the numerically obtained settlements s af-
ter 100,000 cycles is presented in Figure 25b, in particular the
settlement of the foundation is s = 7.5 cm. The calculated
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εampl
ref CN1 CN2 CN3 Cp pref CY Ce eref

[−] [-] [-] [-] [-] [kPa] [-] [-] [-]

10−4 1.21 · 10−3 0.39 5.7 · 10−5 0.43 100 2.0 0.52 0.908

Table 2: Constants of the accumulation model for the ’centrifuge sand’.

ϕc hs ν n ed0 ec0 ei0 α β R mR mT χ βR

[◦] [MPa] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-]

32.8 150 0.2 0.40 0.575 0.908 1.044 0.12 1.0 10−4 6.5 3 6 0.1

Table 3: Constants of the hypoplastic model used in the implicit steps

settlement s(N) is compared to the measured test values in
Figure 26. The calculated and measured curves are in a fairly
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100 101 102 103 104 105

centrifuge model test


by Helm et al. (2000)

FE calculation

Figure 26: Accumulation of foundation settlement during the reg-
ular cycles: FE calculation versus model test.

good agreement At the beginning of the simulation some dis-
crepancy between measured and calculated data was caused
by an inaccurate prediction of the residual settlement after the
irregular cycle. Discussion of this discrepancy is irrelevant in
this paper because the implicit model is responsible for it.
The numerical performance of the presented model is satis-
factory. The mesh dependence becomes noticeable only for
relative coarse discretizations (less than 100 elements). Only
sporadically some unexplained convergence problems appear
in the implicit mode if Abaqus contact elements were used.
In order to allow for the automatic time incrementation the
number of cycles N has been set to be identical to the ’step-
time’ in the pseudo creep mode. It is recommended to begin
calculations in the pseudo creep mode from a small increment
(we have started with ∆N = 0.01). The time step is promptly
increased to ∆N = 500 cycles or more.

6 ACKNOWLEDGEMENTS

The authors are grateful to DFG (German Research Council)
for the financial support. This study is a part of the subproject
A8 ”Influence of the fabric change in soil on the lifetime of
structures” of SFB 398 ”Lifetime oriented design concepts”.

7 APPENDIX A

Vectors and tensors are distinguished by bold typeface, for ex-
ample T,v or in sans serif font (e.g. E). The symbol · denotes
multiplication with one dummy index (single contraction), e.g.
the scalar product of two vectors can be written as a·b = akbk.
Multiplication with two dummy indices (double contraction)

is denoted with a colon, e.g. A : B = tr (A · BT ) = AijBij ,
wherein trX = Xkk reads trace of a tensor. The superscript
tT denotes transposition. Analogously we may define dou-
ble colon :: to quadruple contraction with four dummy in-
dices. Two fourth order identity tensors with symmetriza-
tion Iijkl = 1

2 (δikδjl + δilδjk) and without symmetrization
Jijkl = δikδjl are used. The brackets ‖ ‖ denote the Euclidean
norm. The deviatoric part of a tensor is denoted by an aster-
isk, e.g. T∗ = T − 1

3 1trT, wherein ( 1)ij = δij stands for
the Kronecker’s symbol. The operator ( )ij extracts the ij-th
component from the tensor in brackets. Permutation symbol
is denoted by eijk. Dyadic multiplication is written with ⊗,
e.g. (a ⊗ b)ij = aibj or (T ⊗ 1)ijkl = Tijδkl. Positively
proportional quantities are denoted by a tilde, e.g. T ∼ D.
Normalized quantities are denoted by an arrow and tensors
divided by their traces are denoted with a hat, for example
~D = D/‖D‖ and T̂ = T/trT. The sign convention of general
mechanics with tension positive is obeyed. The superposed
dot, ṫ, denotes the material rate (with respect to N) and the
superposed circle t̊ denotes the Zaremba-Jaumann rate (finite
rotations are accounted for).
The effective Cauchy stress T, the stretching D and the total
deformation is expressed by the logarithmic strain ε = lnU is
used throughout the text (U denotes the right stretch tensor).
Generally, it would be inaccurate to interpret D as a time
derivative of the strain ε given by (4). In the axisymmetric
case, alternatively to the popular Roscoe’s variables:

p = −(T1 + T2 + T3)/3; q = −T1 + (T2 + T3)/2 (39)

εv = −(ε1 + ε2 + ε3); εq = −2
3
(ε1 − 1

2
(ε2 + ε3)) (40)

Dv = −(D1 + D2 + D3); Dq = −(2D1 −D2 −D3)/3,(41)

the ’normalized’, or isomorphic [3], variables :

P =
√

3p, Q =

√
2
3
q, (42)

εP =
1√
3
εv εQ =

√
3
2
εq (43)

DP =
1√
3
Dv DQ =

√
3
2
Dq (44)

are used. The isomorphic variables preserve orthogonality and
distance. Note that P 2 = ‖ 1

3 1trT‖2; Q2 = ‖T∗‖2 and
D2

P = ‖1
3 1trD‖2; D2

Q = ‖D∗‖2 hold. In the 6-D space the
isomorphic components of strain are
{ε11, ε22, ε33,

√
2ε12,

√
2ε13,

√
2ε23} and

{T11, T22, T33,
√

2T12,
√

2T13,
√

2T23}.
The Matsuoka-Nakai [27] inequality−I1I2/I3−(9−sin2 ϕc)/(1−
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sin2 ϕc) ≤ 0 with the critical friction angle ϕc is used through-
out this paper as the yield criterion. It is formulated using
the basic invariants of the stress tensor: I1 = trT, I2 = [T :
T− (trT)2]/2 and I3 = detT.

8 APPENDIX B

Working with a typical settlement formula

s(N) = s1f(N) (45)

one assumes that the information about the cyclic history can
be obtained from the residual settlement after a single cycle,
usually from s1 after the first one. The derivative of s(N)
with respect to N describes the settlement per cycle, e.g. the
settlement due to the K-th cycle is

sK =
ds(N)
dN

∣∣∣∣
N=K

= s1f
′(K) (46)

Of course, in order to be objective, the predicted settlement
due to a given cycle should not depend on how we count cycles
(i.e., which cycle we call ”the first”). Therefore, beside fitting
the experimental observation, the function f(N) must satisfy
the objectivity criterion:

s′(N) = s1f
′(N) = sMf ′(N −M) (47)

in which sM is the settlement due to an arbitrarily chosen cycle
No. M (because someone may consider M as the ’first’ cycle).
Substituting sM from (46) into (47) the objectivity condition
takes the form

f ′(N) ≡ f ′(M)f ′(N −M) (48)

it can be shown that the widely used functions f(N) = NC or
f(N) = 1 + C log(N), cf. [6, 7], do not satisfy this condition.
An objective (consistent) settlement formula is

s(N) = s1
1
C

[1− exp(−CN)] (49)

wherein C is a positive material constant. Indeed, one can
conclude from (48) that f ′(N) has the form

f ′(N) = exp(−CN). (50)

After integration of f ′(N) with respect to N with the initial
condition f(0) = 0 we arrive at (49).
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